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1. Introduction 
The NSW Environment Protection Authority (EPA) has prepared these guidelines to assist 
contaminated-land consultants, site auditors, regulators, landholders, developers, and members of the 
public who have an interest in the outcomes of the assessment and management of contaminated land. 
They will help consultants to design sampling for contaminated sites, with regard to where samples are 
collected, how many samples are collected, and how the data is compared to relevant criteria: they are 
intended to help users obtain data that is appropriately representative for the purposes of the sampling 
and the media being sampled, and to carry out the subsequent analysis and interpretation of the 
collected data. 
As when following any guidance, users should justify the approaches they use, and demonstrate that 
they are appropriate and fit for purpose. 
The guidelines are in two parts. The first part (this document) describes the application of sampling 
design; the second part provides guidance on interpretation of the results. This second part is not a 
stand-alone document and should be read in conjunction with Part 1 – Interpretation.  
These Guidelines have been made in accordance with the Contaminated Land Management Act 1997 
(CLM Act). They should be read in conjunction with the CLM Act, the Contaminated Land Management 
Regulation 2013 (CLM Regulation), and any guidelines made or approved by the EPA under the CLM 
Act. 
The Guidelines complement other guidelines made by the EPA, and several national guidance 
documents that have been approved by the EPA. Those guideline documents are listed in the reference 
section and are specifically referenced in the text, where appropriate. 

1.1. Scope of these application guidelines 

Section 2  
Information on comparing sampling data to action levels. Appendix A includes a summary of common 
descriptive statistics, and Appendices F to L show associated procedures and worked examples. 

Section 3  
Summary of the main statistical distributions and information on associated data transformations and 
data analysis. 

Section 4  
Introduction of the concepts of hypothesis testing, including decision errors and methods for conducting 
hypothesis tests. Procedures for common methods of hypothesis testing, along with worked examples, 
are shown in Appendices F to L. 

Section 5  
Information on confidence intervals for use in estimation problems, along with the use of upper 
confidence limits of the mean (UCLx̅s) as another means of hypothesis testing. Appendices I to L 
provide procedures and worked examples for use of confidence intervals and UCLs, based on common 
distributions. 

Section 6  
Discusses trend analysis for temporal series of site contamination assessment data, including use of 
linear regression and the Mann–Kendall statistic. 
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Section 7  
Includes abbreviations used and a glossary of technical terms. 

Section 8  
Reference list of guidance and technical documents used in this Guidance. 

1.2. Environmental media 
These guidelines address the sampling of soil and solid media, as these are the most common targets in 
the assessment of site contamination. Information is also provided for other media, including 
groundwater, surface water, sediments, and air. Most of the statistical procedures described in these 
guidelines can be applied to all of these media. General advice is provided regarding sampling for 
emerging contaminants, along with specific references. 
This document does not specifically address biota sampling and ecotoxicity testing. For these specialty 
areas, see the following references: 

• Australian and New Zealand Governments (ANZG) (2018) Australian and New Zealand Guidelines 
for Fresh and Marine Water Quality 

• Department of Environment and Science (DES) Queensland 2018, Monitoring and Sampling Manual: 
Environmental Protection (Water) Policy 2009 [sic], DES, Brisbane  

• Department of Environment and Conservation (DEC) 2004, New South Wales (NSW) Australian 
River Assessment System (AUSRIVAS) Sampling and Processing Manual, DEC NSW, Sydney. 

  



6 

2. Comparing data results to action 
levels 
Schedule B1 of the National Environment Protection (Assessment of Site Contamination) Measure 1999 
(NEPM 2013) discusses the application of investigation and screening levels for Tier 1 assessments for 
soil results. 

2.1. Use of statistics in the assessment of site contamination 
Statistics can be broadly categorised as either descriptive statistics, which describe the sample, or 
inferential statistics, which relate the sample information to characteristics of the population. In 
assessing site contamination, both descriptive and inferential statistics are used to characterise sites and 
decision areas. 
Descriptive statistics are discussed further in Appendix A. See the glossary for further definitions of 
statistical concepts. 
For inferential statistics, tests can be either parametric or non-parametric. Parametric statistical tests 
make assumptions about the parameters of the population distribution, whereas non-parametric tests are 
often described as distribution-free statistics, because they make no assumptions about the distribution; 
although they may make assumptions about the data. 
All parametric statistical tests assume that the data are drawn from a particular probability distribution, 
whether the normal, log-normal, gamma, or some other known statistical model. Parametric tests 
generally have non-parametric counterparts, which can be used when the assumptions of the parametric 
test cannot be met. As non-parametric tests do not make assumptions about the distribution, they 
typically have lower statistical power than parametric tests (in cases where the assumptions hold). 
However non-parametric tests are often more accurate and more powerful than parametric tests for even 
modest departures from parametric test assumptions. 
Two assumptions that apply to many forms of inferential statistics are, first, that the sampling data are 
unbiased and, second, that each member of the population has an equal chance of being included in a 
sample. Consequently, the data points are an independent and identically distributed sequence of 
observations. Independent means that each observation is not controlled by the value of any other 
observation. Independence can generally be assumed for random samples if the sample consists of less 
than 10% of the population. Identically distributed simply means that the samples have been taken 
from a parent population whose mean and variance is stationary over the space and time of collection. 
Biased sampling can be both judgmental (also known as targeted) and arbitrary sampling, where certain 
observations are included or excluded because of some feature: this leads to members of the population 
having an unequal opportunity of being sampled. Bias can arise from a subconscious decision of the 
person conducting the sampling.  
Basic statistical tests can be validly applied only to unbiased sample data; data from judgmental or 
arbitrary sampling should not be used for statistical tests. For this reason, it is recommended that data 
obtained using a combination of judgmental and random (probabilistic) sampling approaches is collated 
and considered separately, and that the formal use of statistical techniques is confined to probabilistic 
sample data only. This means that results from judgmental sampling – for example, validation of an 
excavation, or investigation of a contaminating feature such as a leaking pipeline – should be removed 
from a dataset before you perform statistical analysis on the remaining data. 

2.2. Descriptive statistics 
Terms used in statistics are referred to statistical descriptors. Common terms include range, mean 
and percentile.  
Common statistical descriptors can be used to summarise the basic quantitative characteristics of the 
sampling data, allowing them to be presented in tables or illustrated graphically. Where multiple 
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populations or decision areas exist, it is useful to separate the data for analysis and comparison. This will 
generally reduce the variability of the individual datasets. 
Reviewing the data numerically and graphically leads to a better understanding of the structure of the 
data, and also reveals patterns in distribution and relationships, and/or potential anomalies. Data should 
be verified and validated before it is reviewed.  
The commonly used descriptive statistical terms are the sample range, sample measures of central 
tendency (mean, median and mode), sample percentiles, and sample variability (variance, standard 
deviation and coefficient of variation). A preliminary data review could include basic graphical 
representations of the data, such as spatial plots, box and whisker plots, frequency plots, histograms, 
ranked data plots, quantile–quantile (Q–Q) plots, two variable scatterplots, and temporal plots1.  
Descriptive statistics are further summarised in Appendix A, and specific procedures for determination 
and worked examples are included in Appendix B to Appendix D.  

2.2.1. Software tool and packages 
Statistical software tools and packages are available in spreadsheets, commercial software and open-
access freeware. These can be used to determine both descriptive and inferential statistics. Such tools 
and packages are recommended – particularly freeware, as it allows easy access for checking outputs 
by other stakeholders including auditors and regulators, without the associated financial costs and 
licence restrictions associated with commercial products. 
A detailed review and summary of widely available statistical software packages can be found in 
Appendix D of ITRC (2013). This review covers both general statistical packages for broad applications 
and packages specifically designed for statistical analysis of environmental data and includes both 
commercial and open-source freeware. 

2.2.2. Data presentation 
Spreadsheets and statistical software tools and packages can create sophisticated outputs to represent 
the sampling data and associated statistical information. For a preliminary data review, for example, they 
can present data in plan and cross section, both spatially and temporally, and as graphics.  
As noted by DoE (1998): 

While reporting of minima, maxima, mean, median, standard deviation, upper confidence 
limits etc. provides necessary information, such data may not be sufficient to characterise a 
site. The use of histograms or frequency distributions should also be considered to illustrate 
the distribution of results. 

Appendix E gives examples of the types of graphical presentations that can be easily developed. 

2.3. Maximums 
The maximum observed value in a dataset is important in assessing site contamination, as a site or 
decision area is generally considered suitable for the intended land use if the maximum observed value 
is below the criterion or action level. However, such a condition may be misleading. The maximum 
observed value of the contaminant of interest is unlikely to be the maximum value present in the 
population, and the relationship between the two cannot be determined in the absence of statistical 
analysis. 
Where sampling data is highly variable, and/or based on small sample sizes, then it may not be 
representative of the underlying population’s variability and decision errors can arise. The recommended 

 
 

1 See Sections 14.3–14.6 of Schedule B2 of the ASC NEPM (2013), USEPA (2006, G-9S) and USEPA (2006, G-9R) for further 
details. 



 

   
    

        
  

     
     

    

  
      

 
  

   
    

  
  

 
 

     
   

 
     

    
  

    
 

  

  
 

     
         

 
   

      
   

   
   

  
   

  
   
    

     
 

   
     

   
 

  

approach to control decision errors is to conduct appropriate tests that allow statistical inference. 
̅ s. Section 4 and Appropriate tests include hypothesis tests, such as one-sample t-tests and UCLx

Appendix F discuss hypothesis testing; Section 5 and Appendix I to Appendix L for skewed distributions 
discuss UCLs. 
When comparing sample results to criteria and action levels, the sampling data also needs to meet 
another criterion: that no single value should exceed 250% of the relevant investigation or screening 
level (schedule B1, NEPM 2013). 

2.4. Outliers 
In statistics, outliers are data points that do not fall into the expected range of a defined probability 
distribution function. In the context of site contamination assessment however, the characteristics of a 
probability distribution function of a contaminant in question can be difficult to define. Complex historical 
site uses can result in the superposition of multiple probability distribution functions. Hotspots – small 
areas of high concentration – may also be present, with their own probability distribution function. The 
concept of statistical outliers, and the argument that they can be removed from the subsequent statistical 
analysis, do not apply in robust statistical analysis. 
All data resulting from probability-based sampling must be included in the subsequent inferential 
statistical analysis, unless: 

• it can be demonstrated with a high level of confidence that the individual data points are invalid, due 
to transcription errors, data coding errors, or measurement errors in the laboratory analysis 
or 

• the individual data points are subsequently identified – again, with a high level of confidence – as 
part of a hotspot, and the hotspot is appropriately remediated or managed and thereby effectively 
removed from the population. 

In either case, a determination is then needed as to whether further data needs to be generated through 
additional investigations, or if sufficient data is available to support the required decisions. These 
determinations should include appropriate statistical analysis of the remnant dataset. 

2.5. Non-detects 
As part of the assessment of site contamination, where the concentration of an analyte ranges between 
zero and the limits of reporting (LORs) of the laboratory method, the results are reported as less than the 
LORs. This is referred to as left-censored data. In some instances, the data below the LORs may 
represent another population, and the data, including geological logs and field notes, should be 
reviewed to determine if a more appropriate grouping of data is relevant. For determining mean values, 
mixing a large number of results below the LORs with a limited number of detected results can lead to 
estimation problems if simplistic methods are used. 
There are various imputation methods to replace these censored values. Direct substitution is the 
easiest but least satisfactory. Generally, substitution should only be adopted where the fraction of the 
sample that is censored is relatively small. With substitution, a constant value is assigned to the non-
detects by one of the following: 

• assuming the non-detects are equal to zero 
• assuming the non-detects are equal to the LORs 
• assuming the non-detects are equal to some fraction of the LOR, usually one half. 
The proxy value is then used as though it were the value for that measurement. However, the 
uncertainty associated with the substitution method increases as the proportion of non-detects in the 
dataset increases. Statistical determinations and inferences associated with censored data become 
increasingly problematic, because of errors in the estimates of parameters such as the mean, which 
becomes biased down. The direction and extent of the bias in variance is highly dependent on the data 
and substituted value. 

8 
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Where non-detects below LORs exist, you should:  

• always report detection limits for non-detects; 
• not convert non-detects to zeros without specific justification. 
• consider using non-parametric methods, if further statistical analysis is required.  
Other methods of imputation – replacing data with substituted values – include multiple imputation, 
fractional imputation and Bayesian modelling. The appropriate imputation method to use depends on 
the size of the dataset and the proportion of measurements that is reported as non-detects. If the 
proportion of non-detects is high (> 50%) or the number of samples is small (n < 5), analysis may be 
challenging. 
The method of maximum likelihood by first principals can be used successfully to estimate the 
parameters of a probability distribution even where there is censored data: for censored data points, 
summing is replaced by integration between limits (zero and LOR). In general, the point of maximum 
likelihood cannot be determined algebraically but must be solved numerically (for instance, with the hill 
climbing technique or Newton Rapson technique), though this is no longer an issue with access to 
desktop computing power. 
Additionally, there are various statistical packages dealing with censored data that are suitable for 
laboratory measurements.  
Refer to ITRC (2013) and USEPA (2015a) for further details of specific methods for managing non-
detects in statistical analyses. 
Importantly, Wendelberger and Campbell (1994) note that: 

[t]he manner in which the nondetect values are handled should depend on the type of 
decision to be made and the magnitude and frequency of the nondetect values. If the 
nondetects are small in magnitude or low in frequency, the method of handling the 
nondetects will probably have minimal impact on the final outcome of the analysis. However, 
if the detection limits are close to important decision values, or if the frequency of nondetects 
is high, the treatment of the nondetect values can greatly influence resulting decisions. 

Whichever statistical approach is adopted, the site CSM (conceptual site model) should be re-developed 
in light of the proportion of the dataset samples that are non-detects. For instance, if a site has a small 
proportion of detections and a high proportion of non-detections, then the source of the contamination 
should be carefully considered when refining the CSM. An option might be to stratify the site, so that 
areas where there are widespread non-detections are assessed separately from areas with detections, 
especially if investigation levels are being exceeded.  

2.6. Pseudoreplication 
In site contamination assessment, the collection and analysis of duplicate and triplicate samples is 
conducted as part of quality assurance/quality control (QA/QC) programs. Whereas this is important in 
determining the data’s usability, these replicate sample results must not be treated as an independent 
sample. Doing so is known as pseudoreplication because the duplicates and triplicates are not 
independent of the primary sample. Pseudoreplication increases the number of samples while providing 
another data point similar to the primary sample, resulting in bias and distortion of any statistical analysis 
being undertaken. 

2.7. Contaminant distribution 
The variation of contaminant concentrations over a site or decision area means that individual 
measurements cannot be used to fully describe the distribution of a contaminant. If the contaminant 
concentrations are plotted against their respective frequency of occurrence, the resulting curve or 
histogram represents the concentration distribution of that contaminant over the site or decision area.  
While histograms inform the characterisation of the site or decision area, they should not be taken to 
represent spatial information across the site or decision area; rather, they show the range, central 
tendency, variation and distribution of the variables under consideration. Under the multiple lines of 
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evidence and weight of evidence approach, these parameters should be considered when interpreting 
the data and comparing it to the criteria or action levels. 
For example, comparing the sampling results to 250% of the relevant investigation or screening level can 
lead to identifying apparent hotspots, with the suggestion that removal of these specific areas will make 
the site or decision area suitable for the proposed land use. However, closer examination of the data 
may show that the apparent hotspots relate to heterogeneity of the soil/fill, and that any subsequent 
validation would result in the identification of further ‘hotspots’. In these situations, further 
characterisation to confirm the variability of the soil/fill may provide better information for decision making 
as to remediation or management. In such situations, the use of statistical tools can assist, particularly in 
relation to decision errors and determination of a suitable number of samples. 
Schedule B1 of NEPM (2013) requires that sampling results should be checked so that the standard 
deviation of the variable should be less than 50% of the relevant investigation or screening level. 
Although 50% is an arbitrary value, it serves the purpose of warning if the variance is potentially 
excessive, prompting further review of the contaminant distribution. 
In these cases, further segregation of the data, by depth, soil type or spatial distribution for example, 
may demonstrate that multiple populations are inappropriately being considered as a single population. 
Alternatively, the data may indeed represent a highly variable population, and further sampling is 
indicated.  
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3. Distributions, transformations and 
data analysis 
The sampling distribution is the frequency or probability of occurrence of measured values. In the 
assessment of site contamination, data can be analysed using parametric (distribution based) methods, 
or non-parametric methods where the population is not assumed to fit a specific population distribution. 
Statistical software packages provide more complex calculations of UCL using a number of parametric 
and non-parametric distributions, however a brief review of the predominant distributions used is 
warranted. 
Where the sampling data has a normal (or more strictly, nearly normal), log-normal or gamma 
distribution, parametric methods can be applied. Where the sampling data does not have one of these 
distributions, non-parametric methods should be used. Non-normal datasets can have a transform 
applied to essentially normalise the data, which aids analysis. 

3.1. Parametric methods 
Population parameters are estimated from samples. Different random samples will produce different 
estimates of each parameter; for instance, each sample will produce a different estimate (using ) of the 
population mean, µ. These estimates themselves have a distribution, known as the sampling 
distribution. Many common statistical methods are based on a knowledge of, or the assumed 
characteristics of, the sampling distributions of population parameter estimates. 

3.1.1. Normal distribution 
The most commonly used distribution in parametric statistics is the normal. The central limit theorem 
(CLT) says that the sampling distribution of the mean for n independent random samples approaches a 
normal as n increases. This holds for all population distributions with finite mean and variance. A key 
feature of the normal distribution is that the mean, median and mode are equal. 
Based on the CLT, the sampling distribution of  can be approximated by a normal distribution when the 
sample size n is sufficiently large (> 30), irrespective of the shape of the population distribution. The 
larger the value of n, the better the approximation (Devore and Farnum 2005). 

3.1.2. Log-normal distribution 
Log transformations convert samples to natural log values, to allow the use of log-normal or exponential 
distributions for analysis. The log-normal is a continuous distribution in which the logarithm of a variable 
has a normal distribution. Thus, if the random variable x is log-normally distributed, then y = ln(x) has a 
normal distribution. Likewise, if y has a normal distribution, then the exponential function of y (that is, x = 
exp(y)) has a log-normal distribution. 
In log-normal distributions, the mean, median and mode are not equal. The difference between mean 
and mode depends on the skewness of the population, while the median is independent of skewness. 

3.1.3. Gamma distribution 
The gamma distribution offers greater flexibility in terms of fitting data than the normal and log-normal 
distribution.  Gamma distribution is a rank-order transformation wherebythe contaminant concentration 
data is sorted into ascending order and converted to an integer ranked list. This transform process 
eliminates the scale effects in contaminant concentrations that are commonly found in site contamination 
datasets and so reduces the effect of large differences between results in a dataset. 
This distribution type is relevant to the assessment of contaminated sites due to the relationship to 
exponential and normal distributions. The gamma distribution is a two-parameter family of continuous 
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probability distributions. The exponential distribution and the chi-squared distribution are special cases of 
the gamma distribution.  
Three different parametrisations for gamma distributions are in common use:  

• a shape parameter k and a scale parameter θ 
• a shape parameter α = k and an inverse scale parameter β = 1/θ, called a rate parameter  
• a shape parameter k and a mean parameter μ = kθ = α/β. 
In each of these three forms, both parameters are positive real numbers and control the shape and 
skewness of the distribution.  

3.1.4. Parametric methods in the analysis of site contamination assessment data 
When using distributions to assess site contamination data, you must take into account the limitations 
imposed by each distribution, as these determine how well the distribution can provide a reliable 
interpretation of the actual population.  
Data for assessing contaminated sites is rarely normally distributed, due to the kind of processes that 
lead to site contamination. When the mean, median and mode are not equal, or the coefficient of 
variance is > 0.5, consider carefully before using the normal distribution for analysis. Similarly, be 
cautious when applying the log-normal distribution, as the data for assessing contaminated sites is often 
not truly log-normally distributed. The application of either distribution needs to the be verified by testing 
that the data is approximately normally distributed, or normally distributed after the log transform is 
applied. The distribution can be tested by using a statistical software package to construct quantile–
quantile (Q–Q) plots, which graph the quantiles of the dataset against the quantiles of a specific 
probability distribution.  
It is generally recommended that skewed datasets are assessed using a gamma distribution rather than 
a log-normal distribution, as this produces more reliable results (EPA 2009). A log-normal transformation 
disguises the effect of high values that may not represent background and exaggerates the apparent 
standard deviation of the modelled log-normal distribution. This increases the risk of making an incorrect 
decision in relation the population distribution and associated statistical parameters. Therefore, for 
assessing skewed site contamination datasets, the gamma distribution should be used when performing 
parametric analysis, particularly if the sample size is less than 20 and/or contains outliers. Because of 
the gamma function’s flexibility in accommodating a wide range of symmetric and asymmetric (skewed) 
distributions, it can represent log-normally distributed datasets without the risk of masking the effects of 
outliers. 
When the site assessment data is highly skewed by extreme values or a significant number of non-
detect values, it may be hard to determine an appropriate distribution for parametric analysis. In such 
cases non-parametric methods may give more reliable results. 

3.2. Non-parametric methods 
Non-parametric statistics are analysis methods that either make no assumption about the distribution of 
the data or the population, or, where a specific distribution is assumed, do not specify the distribution’s 
parameters. Commonly used non-parametric methods for making inferences in the assessment of site 
contamination data are the bootstrap, jackknife and Chebyshev methods. 
Compared with non-parametric methods analogous parametric methods are usually more powerful in 
situations where the assumptions of parametric methods hold. Where a population departs from these 
assumptions, the non-parametric tests can be superior. 

3.2.1. Bootstrap 
Bootstrapping is the practice of estimating properties of a statistical parameter by measuring those 
properties through randomly re-sampling the dataset with replacement data. Data points need to be 
independently and identically distributed. This ‘new’ dataset is then used to estimate the statistical 
parameters such as mean, median, mode, standard deviation, etc. Bootstrapping can also be used for 
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constructing hypothesis tests, as an alternative to statistical inference based on the assumption of a 
parametric model, when that assumption is in doubt. 
Bootstrapping, like any non-parametric resampling method, offers a useful means of reducing the 
influence of extreme outliers on the overall statistical parameters of the underlying population that was 
sampled. However, caution is required in the use of this non-parametric method, to avoid diminishing the 
importance of the outliers in relation of the overall decision: where the outlier represents a hotspot, a 
non-parametric re-sampling method such as bootstrapping may not be appropriate. The use of this 
method must therefore be justified in the context of the importance of the outliers to the overall decision 
to be made. 

3.2.2. Jackknife 
Jackknifing is similar to bootstrapping, in that the method re-samples the dataset and generally produces 
similar results, although instead of making random replacements as in bootstrapping, the jackknifing 
method just randomly removes a sample in each resampling step. The re-sampled dataset can then be 
analysed with the same methods as those used for bootstrapping. Jackknifing is subject to the same 
limitations and cautions as bootstrapping. 

3.2.3. Chebyshev 
The Chebyshev method is a non-parametric method that does not involve resampling of the dataset but 
instead relies on use of the Chebyshev’s inequality. This specifies that, for all distributions with finite 
mean and variance, no more than a certain fraction of values can be more than a certain distance from 
the mean. That is, no more than 1/k2 of the distribution’s values can be more than k standard deviations 
away from the mean with 100% certainty. 
The inequality has great utility because it can be applied to any probability distribution in which the mean 
and variance are defined, and so it can be applied to all practical problems. When applied to datasets for 
assessing site contamination, the Chebyshev method provides an option for determining statistical 
parameters, particularly the mean, for highly skewed datasets or ones that contain significant outliers. In 
most applications the Chebyshev method gives a more conservative result than the other parametric and 
non-parametric methods.  
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4. Hypothesis testing 
Decision problems can be addressed as statistical hypothesis tests, which are recommended under the 
USEPA’s DQOs (data quality objectives) process. The null hypothesis significance testing (NHST) 
framework, derived from approaches for testing data, is a method of statistical inference used to 
determine if a null hypothesis (H0) should be rejected in favour of an alternative hypothesis (HA), at a 
specified level of confidence. In the assessment of site contamination, H0 is that the site or decision area 
is not suitable for the specified use, i.e. that the site or decision area is contaminated. 
The hypothesis test is conducted on the basis that H0 can be rejected where there is compelling 
evidence to the contrary, such that the findings are incompatible with H0 being true, in which case HA is 
accepted as being more likely. Alternatively, H0 can fail to be rejected. Importantly, this does not 
necessarily mean that H0 is true, but rather that there is insufficient evidence to reject the site being 
contaminated. 
Prior to testing, an environmentally significant difference from the criterion level should be established. 
For H0 to be rejected, the data must show that (with given confidence) the population parameter is at or 
below this level. This environmentally significant difference is greater or equal to zero to provide an 
environmental buffer. 
The most common form of hypothesis testing is for nearly-normally distributed populations. Here 
estimated population means are tested using the Student’s t test (t-test), which is used to test for 
differences in population means. This test can be carried out as: 

• a one-sample t-test, to test whether the mean of a single population is different from a target value, 
such as a specified health investigation level (HIL) 

• a two-sample t-test, to compare the means of two groups, such as site data and background data 
• a paired sample t-test, to compare the means from the same group at different times, such as 

before and after remediation. 
If there are non-detects, special working is required to estimate the mean and variance. 
Worked examples are shown in Appendix F (a one-sample t-test) and Appendix G (a two-sample t-test). 
Comparable parametric methods also exist for non-normal distributions, and non-parametric methods 
exist for testing differences in means and/or medians in unknown distributions (see USEPA 2006, G-9S). 

4.1. Sampling uncertainty and decision errors 
Uncertainty in estimates is unavoidable due to a variety of factors, such as inherent variability in the 
characteristics of interest of the target population, the limits on the number or samples that can be 
collected, and the imperfect measurements that follow. Statistical methods provide quantitative tools for 
characterising the uncertainty in an estimate, and therefore play an important role in designing an 
investigation that will generate probabilistic data of a sufficient type, quality and quantity. 
One can never be ‘certain’ about an answer derived from sampling, so the uncertainty must be specified 
for a statistical statement to have meaning. In statistics, uncertainty is technically referred to as risk or 
confidence level. The risk of incorrectly rejecting H0 is denoted by α (alpha) and has a magnitude of 
between 0 and 1. The risk of incorrectly accepting H0 is denoted by β (beta), which is also between 0 
and 1. For example, if a particular statistical statement is quoted as having a 95% confidence level, 
(α = 0.05), this implies that at least 95 out of I00 repeats of the sampling will correctly accept a true H0. A 
power of 80% (β = 0.2) means an 80% chance of correctly rejecting a false H0. 

In the assessment of site contamination, α risk in this context is defined as the risk of deciding that the 
site or decision area is suitable for the proposed use when in fact it is not, and the confidence level is 
always equal to 1 - α. The probabilities generally used in the assessment of site contamination are 
α = 0.05 and β = 0.2, or a 95% confidence level and a statistical power of 80%, although higher 
probabilities can be used, such as α = 0.01 and β = 0.1, or a 99% confidence level and a statistical 
power of 90%.  

https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/t-test/#PairedTTest
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Changing one probability inevitably changes the other. One way to obtain both a high confidence level 
and high statistical power is to increase the number of samples. More sophisticated sampling designs 
and associated analysis can also be used to increase the power. (See Section 4). 
Within hypothesis testing, decision errors refer to the incorrect decisions that can be made about a site 
or decision area, based on the data collected. They arise from using data that are not sufficiently 
representative of the site or decision area, because of either sampling errors or measurement errors, or 
more commonly both. Such errors can lead to decisions that assess contaminated land as 
uncontaminated when it is contaminated, or that determine that remediation is required when it is not. 
The combination of errors from all sources is referred to as the total study error, and directly affects the 
probability of making decision errors. The statistical theory behind hypothesis testing allows the 
probability of making a decision error to be quantified, given the data collected and the specified level of 
significance. 
Decision errors result from: 

• sampling errors, which arise from using information from a sample instead of measuring the whole 
population  

• sampling design errors, which arise when the sampling design does not validly capture the 
structure of the population. They include sampling frame selection, sampling unit definition, selection 
probabilities and the number of samples collected 

• measurement errors, which arise from the variability inherent in sample collection, handling, 
preparation, analysis and data reduction.  

Study error is managed through the correct choice of suitable sampling designs and measurement 
systems. Refer to Appendix H for additional information on the types of decision errors. 

4.2. Use of hypothesis tests 
Formal statistical methods can quantify the uncertainty associated with decisions. ITRC (2103) notes the 
following common decision errors that can arise in the assessment of site contamination, and hypothesis 
tests that can control them: 

• concluding that a site or decision area is suitable when the sample maximum is less than the 
criterion or action level. This is not necessarily true. For some distributions and sample sizes, the 
population mean of the site or decision area may be greater than the criterion or action level, even 
though a particular sample maximum is less than the criterion or action level.  
This is a Type I decision error, and a one-sample hypothesis test will allow statistical inference and 
control of decision errors 

• concluding that a site or decision area is not suitable when the sample maximum is more than 
the criterion or action level. This is not necessarily true either, as the population mean of the site or 
decision area may be less than the criterion or action level when the sample maximum is more than 
the decision criterion, depending on the nature of the distribution and the sample size.  
This is a Type II decision error, and a one-sample hypothesis test will allow statistical inference and 
control of decision errors. The systematic planning for the investigation should describe how 
maximum values will be treated – for instance, what further data analysis or investigation will be 
carried out if the maximum value exceeds 250% of criterion or action level 

• concluding that the failure to reject the null hypothesis ‘proves’ the null hypothesis (i.e. that 
the site is too contaminated to be acceptable). As environmental data typically shows large 
random variability, the sample could by chance include a preponderance of elevated concentrations, 
particularly if the sample size was small and so the statistical test is of insufficient power. 
The power of the test (1 - β) should be determined and compared to the decision criteria, and/or the 
number of samples required to achieve the specified decision criteria determined using the combined 
risk value (CRV) method discussed in Part 1 of these Guidelines (i.e. not this document). If 
insufficient samples were collected (i.e. the test was conducted with insufficient power) further data 
analysis or investigation may be required 

• directly comparing the maximum value of a site or decision area with a background maximum 
or mean, without considering potential decision errors. The maxima from the two datasets 
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should not be compared to make inferences about the means of the datasets, as decision errors are 
not controlled for and this can result in Type I errors. A two-sample hypothesis test is recommended 
to allow statistical inferences and to control decision errors. 
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5. Confidence intervals and upper 
confidence limits 
A confidence interval is an interval used to estimate a population parameter from sample data and is 
composed of two parts: an interval calculated from the data and a confidence level associated with the 
interval. In the assessment of site contamination, the confidence interval is generally expressed as a 
point estimate, usually the mean, plus and minus (±) the margin of error. Because confidence intervals 
are expressed this way, they are determined using two-sided intervals for the t critical values. 
Upper confidence limits (UCLs) are the upper component of the confidence interval and are therefore 
determined using the one-sided interval for the t critical values. 
Hypothesis tests and confidence intervals are related, as they are determined using variations of the 
same formula, and often a confidence interval can be used to test a hypothesis, making it unnecessary 
to perform the entire hypothesis test. In assessing site contamination, a decision is generally only 
required as to whether the estimated population parameter exceeds the criterion or action level, and so 
UCLs can be used by themselves as a form of hypothesis testing. 

5.1. Confidence intervals 
Performance criteria are needed to estimate an unknown parameter to within a specified amount, with a 
given confidence level: they specify the maximum width of the confidence interval. The width of a 
confidence interval depends on the number of samples used to calculate the interval; the precision, or 
variability, of the dataset; and the specified confidence level. By placing limits on the maximum width of a 
confidence interval, the precision and the number of samples needed to calculate the interval can be 
determined. As the variability of the population being studied is generally fixed, only the confidence level 
and number of samples can be controlled. 
For independent samples from an approximately normal distribution, or where the sample size is large 
(n ≥ 30), confidence intervals for mean values are determined by using the one-sample Student’s t-test. 
This test is reasonably robust if the population distribution deviates only moderately from normality; 
however, for highly skewed data sets with significant outliers, or where significant non-detects are 
included in the data set, other distributions or nonparametric methods should be used. 
Appendix F shows how to determine confidence intervals using the one-sided Student’s t-test and gives 
a worked example. For other distributions not discussed below, or for non-parametric methods, see 
USEPA (2006, G-9S). 

5.2. Upper confidence limits 
When assessing site contamination, the main way to determine if sites or decision areas are suitable for 
their proposed uses is to employ upper confidence limits (UCLs) as one-sided hypothesis tests for 
comparing the sample mean to the action levels or criteria. The appropriate method is determined by the 
population distribution, as indicated by the sampling data. The appendices give various methods, with 
their associated assumptions and limitations, plus worked examples:  

• for normal distributions, Appendix J shows the one-sided Student’s t-test method 
• for log-normal distributions, Appendix K shows the Land’s H-statistic method 
• for skewed distributions, Appendix L shows the Chebyshev inequality method. 
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6. Trend analysis 
Trend analyses are typically used in the assessment of site contamination to determine if a 
contaminant’s concentrations are increasing, decreasing or remaining constant over time. The objective 
of a trend analysis is to determine if the changes of a contaminant concentration can be statistically 
correlated to time and, if so, how significant the correlation is. Two trend analysis methods are described 
below. These are generally applied to datasets for water or air, although they can be used when 
assessing remediation, such as the bioremediation of soil. 

6.1. Linear regression 
The calculation of a linear regression, or line of best fit, is a common way to measure the relationship 
between two variables. In the assessment of site contamination, a linear regression analysis is often 
used to assess if there is a trend between a contaminant concentration and time (for example, is the 
concentration of benzene in monitoring well two decreasing over time)?  
Data should be presented on a time plot to determine, visually, if a trend is likely, then the Pearson 
Correlation Coefficient or r-value should be calculated. This is a measure of the strength of the linear 
relationship between the two variables. The r-value can be a value between 1 and -1, with 1 indicating a 
strong positive relationship between the two variables, -1 indicating a strong negative relationship, and 0 
indicating no relationship at all. 
While the calculation of an r-value of 0.98 may indicate a strong positive relationship between the 
contaminant concentration and time, it is possible that other factors are affecting this relationship. Simple 
linear regressions can be affected by seasonality, the distribution of the data, and the number of samples 
below the LORs. USEPA (2006, G-9S) states that due to these limitations, linear regressions are not 
recommended as a general tool for estimating and detecting trends but can be used as an informal and 
quick screening tool to detect if a strong linear trend is present. 

6.2. Mann–Kendall 
The Mann–Kendall test is used to assess trends in datasets, and being a non-parametric test, it makes 
no assumption regarding data distribution and is unaffected by missing data or values below the LORs.  
The test compares each data point against the next data point, and a score of 1 or -1 is given for each 
comparison, according to whether there is an increase or decrease in concentration. (The test is not 
affected by the magnitude of the change.) The individual scores are tallied to provide the Mann–Kendall 
statistic (S): a positive S indicates an upward trend whilst a negative S indicates a downward trend. The 
value of S is then compared to an S-critical value. A p-value is then calculated for comparison to the 
adopted significance level, which determines if the null hypothesis (of no trend) is rejected or accepted.  
The Mann–Kendall test is also affected by seasonality, and only data from similar months each year 
should be compared if this is likely to be important. Where high seasonality effects can be expected, to 
be able to calculate a meaningful result you need to collect data over at least four years. 
The output of the Mann–Kendall test will be either 1) that the concentrations are increasing, 2) 
concentrations are decreasing, or 3) that there is no trend. However, following this test, a linear 
regression analysis can be performed to determine the strength of the trend (providing the potential 
limitations of the linear regression are considered). Further information on the use of the Mann–Kendall 
test to assess trends can be found in Gilbert (1987) USEPA (2009, G-9S) and IRTC (2013). 
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7. Abbreviations and glossary 
7.1. Acronyms 
ABC Ambient background concentration  
ANZG Australian and New Zealand water quality guidelines  
CECs Contaminants of emerging concern  
CLT Central limit theorem  
CLM Contaminated land management 
CRV Combined risk value  
CSM Conceptual site model 
CV Coefficient of variation  
DNAPLs Dense non-aqueous phase liquids  
DQIs Data quality indicators  
DQOs Data quality objectives 
DSI Detailed site investigation 
DUs Decision units  
EPA Environment Protection Authority 
HIL Health-based investigation level 
HSL Health screening level 
ISM Incremental sampling methods 
LNAPLs Light non-aqueous phase liquids  
LOR Limits of reporting 
Metals Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) 

and zinc (Zn) 
MoE Margin of error  
MPE Maximum probable error  
MQOs Measurement quality objectives 
NEPM National Environmental Protection Measure 
NHST Null-hypothesis significance testing  
NOW New South Wales Office of Water 
OEH New South Wales Office of Environment and Heritage  
PAHs Polycyclic aromatic hydrocarbons 
PFAS Per- and poly-fluorinated alkyl substances 
PFOS  Perfluorooctane sulfonate 
PFOA Perfluorooctanoic acid  
PFHxS Perfluorohexane sulfonate  
PSH Phase-separated hydrocarbon 
PSI Preliminary site investigation 
PCoCs Potential contaminants of concern 
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PID Photoionisation detector 
PTFE Polytetrafluoroethylene  
QAPP Quality assurance project plan  
QA/QC Quality assurance/quality control 
Q–Q Quantile–quantile  
RAP Remediation action plan 
RSD Relative standard deviation 
SAQP Sampling and analysis quality plan 
SOPs Standard operating procedures  
STP Sewage treatment plant 
SWL Standing water level  
TOFA Total organic fluorine assay 
TOPA Total oxidisable precursor assay  
TRHs Total recoverable hydrocarbons, including volatile C6–C10 fractions and semi- and non-

volatile C11–C40 fractions  
UCLs Upper confidence limits  
UCL Upper confidence limits of means  
UPSS Underground petroleum storage system 
USEPA United States Environmental Protection Agency  
UST Underground storage tank 
VOCs Volatile organic compounds 

7.2. Statistical notations 
1 - α Confidence level 
α Type I error rate (see Glossary) 

β Type II error rate (see Glossary) 
c Criterion/action level 
df Degrees of freedom 
exp Exponential function 
HA Alternative hypothesis 
H0 Null hypothesis 
n Number of samples or measurements in a sample (see sample definition) 
θ Scale parameter of the gamma distribution 
σ The population standard deviation, which is generally not known 
σ2 The population variance, which is generally not known 
p-value Probability value 
Δ Uppercase Greek letter delta, denoting the width of the grey region associated with 

hypothesis testing 
s The sample standard deviation, which is determined from the measurements taken 
s2 The sample variance, which is determined from the measurements taken 
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δ0 Difference (delta) of zero 

tα Critical value 
t0 Test statistic 
µ The population mean, which is generally not known 

UCL Upper confidence limit of mean  

 The sample mean, which is determined from the measurements taken 
xi The ith measurement in the dataset 
 

7.3. Glossary 

α risk 
The probability, expressed as a decimal, of making a ‘type I error‘ when the hypothesis is tested 
statistically. A type I error wrongly rejects a null hypothesis when in fact the null hypothesis is true. In this 
document, the null hypothesis always assumes that the site is ‘contaminated’ and thus the α risk refers 
to the probability of a site being validated ‘uncontaminated’ when in fact it is ‘contaminated’. 

β risk 
The probability, expressed as a decimal, of making a ‘type II error’ when a hypothesis is tested 
statistically. A type II error wrongly accepts a null hypothesis when in fact the null hypothesis is false. In 
this document, the null hypothesis always assumes that the site is ‘contaminated’ and thus the β risk 
refers to the probability that a site is concluded ‘contaminated’ when in fact the site is ‘uncontaminated’. 

Acceptable limit 
A threshold concentration value below which the level of contamination is regarded as acceptable. An 
acceptable limit can either be adopted from the appropriate guidelines, or it can be derived on a site-
specific basis using risk assessment. Where site remediation is involved, acceptable limits are often 
referred to as ‘clean-up standards’ or ‘remediation standards’. 

Acceptance criteria 
A statistical statement specifying how a contaminant distribution will be compared with an acceptable 
limit (see above definition) to determine whether a site should be evaluated as ‘contaminated’ or 
‘uncontaminated’. The concentrations of a contaminant can vary over orders of magnitude in a sampling 
area. All site assessments must state the appropriate acceptance criteria, as well as the appropriate 
acceptable limits. 

Ambient air 
External air environment, not including the air environment inside buildings or structures. 

Arithmetic mean 
The arithmetic mean is commonly referred to as the average and is used to describe the centre of the 
data distribution. It is obtained by summing all the values and dividing the result by the number of values. 

Central tendency 
The central or typical value for a probability distribution and may be considered the average value in a 
set of data. It is generally described by the mode, median, or, more commonly, the mean, and describes 
where a sample distribution is centred. 
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Chi-squared distribution 
A type of cumulative probability distribution that varies depending on the degrees of freedom (df). It is 
used to test relationships between categorical variables in the same population. 

Coefficient of variation (CV) 
CV is the measurement of the relative homogeneity of a distribution. Low CV values, e.g. 0.5 or less, 
indicate fairly homogeneous contaminant distribution, while CVs with values over I–1.2 imply that the 
concentration distribution of a contaminant is heterogeneous and probably highly skewed to the right. 

Composite sample 
The bulking and thorough mixing of soil samples collected from more than one sampling location to form 
a single soil sample for chemical analyses. 

Conceptual site model (CSM) 
Provides a three-dimensional overview of the contamination at sites and their surrounds, highlighting the 
sources, receptors and exposure pathways between the sources and receptors. 

Confidence level 
The probability, expressed as a percentage, that a statistical statement is correct. Confidence level is the 
opposite expression of ‘risk’ (see definitions of α and β risks). For the purpose of this document in which 
a risk that needs to be regulated, the confidence level is always equal to I - α. 

Contaminated 
For the purpose of this document and depending on the context, ‘contaminated’ can have slightly 
different meanings. If a site or a sampling area is evaluated as ‘contaminated’, it means that the site or 
the sampling area as a whole has not met the acceptance criteria (see definition of acceptance criteria). 
‘Contaminated’ can also be used to describe a localised area or soil that has contaminant concentrations 
exceeding an acceptable limit (see definition of acceptable limit). Note: depending on what the 
acceptance criteria are, an entire site could be considered ‘uncontaminated’ even though a certain 
percentage of the site is expected to be ‘contaminated’. 

Data quality objectives (DQOs) 
A systematic planning process used to define the type, quantity and quality of data needed to support 
decisions relating to the environmental condition of a site or a specific decision area. 

Decision area 
A specific area or medium within a site, or offsite, about which data is being gathered so a decision can 
be made. For example, a decision can include part of a site, soil, a stockpile, soil gas, groundwater, 
surface waters or sediments.  

Estimate 
An estimate is a value that is inferred for a population based on data collected from 
a sample of units from that population. For example, the measured data from a sampling event used to 
calculate the sample mean () is then used to estimate the population mean (µ). 

Estimation 
A technique that systematically adjusts the sample data to determine an estimated value for 
the population.  

http://www.abs.gov.au/websitedbs/a3121120.nsf/home/statistical+language+-+statistical+language+glossary#Population
http://www.abs.gov.au/websitedbs/a3121120.nsf/home/statistical+language+-+statistical+language+glossary#Sample
http://www.abs.gov.au/websitedbs/a3121120.nsf/home/statistical+language+-+statistical+language+glossary#Data%20unit
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Geometric mean 
This is similar to the arithmetic mean (described above), in that it is also a measure of the central 
tendency of the distribution of a population or sample. It is sensible to calculate geometric means only on 
populations or samples that contain positive values. The geometric mean is obtained by multiplying n 
values from the data set together, then taking the nth root of the product. 

Grab samples 
Samples collected from different locations that will not be composited but analysed individually. 

Hotspot 
A localised area where the level of contamination within that area is noticeably greater than that in 
surrounding areas. Note that a hotspot is only relatively high in contamination. 

Inter well 
Comparison between two groundwater monitoring wells that are separated spatially. 

Intra well 
Comparison of measurements over time at one groundwater monitoring well. 

Maximum 
The maximum observed value in a data. Important, as it generally provides a conservative estimate of 
the potential exposure risks. It is generally assumed that if the maximum is below the action level, then 
the site should be suitable for the associated land use. 

Median 
The middle value of the distribution. Half the data values are less than the median and half are greater. 

Minimum size effect 
The acceptable magnitude of the difference between the populations or groups being studied. 

Mode 
The value that occurs most frequently. It is determined by counting the number of times each value 
occurs. 

Modules 
A series of discrete DQOs outputs, based on logical categories, that address selected components of a 
site investigation. Modules can be selected for contaminant types, media, decision areas, or a workable 
combination of these.  

Neyman–Pearson method 
A method of statistical inference used to determine if a null hypothesis (H0) should be rejected in favour 
of an alternative hypothesis (HA), at a specified level of confidence. 

Outlier 
A data point that sits outside the expected range of the data. An outlier can have either a high or low 
value. Unless there is a demonstratable reason for rejecting them (such as coding error, sample 
contamination or equipment failure), outliers need to be retained within sample datasets.  
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Parameters 
Numerical measures of the characteristic of interest in the population being sampled. Typical parameters 
are the population mean (µ), variance (σ2) and standard deviation (σ). Parameter values are usually 
unknown.  

Percentiles and quartiles 
As their names suggest, these are descriptive values used to equally split a dataset into 100 parts. A 
percentile is the value that a given percentage of observations in a dataset is equal to or less than, e.g. 
80% of observations in a dataset are at or below the 80th percentile, while 20% are above. 
Quartiles are commonly used to break the dataset up into four equal parts, providing an indication of the 
distribution and variance of the data. 

First quartile – the 0th percentile up to (and including) the 25th percentile 
Second quartile – from the 25th percentile up to (and including) the 50th percentile 
Third quartile – from the 50th percentile up to (and including) the 75th percentile 
Fourth quartile – from the 75th percentile up to (and including) the 100th percentile 

Population 
Any large collection of objects, things or individuals with some characteristics in common, that is being 
studied and for which information is sought. The population under consideration must be clearly and 
succinctly defined to allow effective sampling design and subsequent reporting. 
The population can be further defined as the target population and the sampled population, and 
ideally these should be the same. The target population is the set of all units that comprise the items of 
interest, that is the population about which a decision is required, and the sampled population is that part 
of the target population that is accessible and available for sampling. If the two diverge significantly, the 
target population should be redefined. 

Probabilistic sampling 
Probabilistic sampling occurs when each member of the population has a given probability (greater than 
zero and less than one) of being included in the sample. If the probability is the same for all population 
members then, and only then, will the sample be unbiased. Because inclusion in the sample is based on 
probability, subsequent samples won’t necessarily include the same members. 

Range 
The range of a dataset measures the spread between the highest and lowest values in the dataset. 
Other measures (such as the standard deviation and the interquartile range) are required to provide an 
understanding of the distribution of the data. 

Residual soil 
The soil at a site that is not contaminated by industrial, commercial, or agricultural activities, consistent 
with the term ‘ambient background concentration’ (ABC) from the NEPM. Residual soils can include 
natural soils, reworked natural soils and historically imported material. Residual soils may have naturally 
occurring background levels of contaminants, contaminants that have been introduced from diffuse or 
non-point sources by general anthropogenic activity, and only low levels of contaminants attributed to 
industrial, commercial, or agricultural activities. 

Sample 
‘Sample’ has a number of meanings in the assessment of site contamination, including: 

• as more broadly used in statistics, a representative group drawn from a population for description or 
measurement 
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• a physical amount of a material (soil, water, air, etc.) or an aliquot, taken for testing or chemical 
analysis 

• a sampling point or sample location, being the location in plan at which a sample is collected, 
including description (e.g. geological logs) and field screening (e.g. PID, XRF, etc.). 

Sample size 
The number of samples or sampling points selected in a sampling program. 

Sampling, analysis and quality plan (SAQP) 
Incorporates the CSM and the DQO outputs, to provide the context and justification of the selected 
sampling and analysis. The methods, procedures and QC samples associated with the DQIs, including 
the frequency and MQOs, along with any associated contingencies, are also documented. The SAQP 
ensures that the data collected is representative and provides a robust basis for site assessment (NEPM 
2013). 

Sampling pattern 
The locational pattern of sampling points within a sampling area. 

Sampling point 
The location at which a soil sample is collected. 

Site characterisation 
The assessment of the nature, level and extent of contamination. A typical site characterisation involves 
a preliminary site investigation (PSI), followed by a detailed site investigation (DSI), where warranted. 

Site validation 
The process of showing that a site is successfully remediated. 

Standard deviation 
Calculated by taking the square root of the variance (described below). It provides an indication of a 
population or sample data’s typical deviation from its mean. 

Statistic 
Any summary number that describes the sample, such as an average or percentage. For example, the 
mean of a sample is described as  (x-bar) and the standard deviation as s. When describing the 
population from which the sample is drawn, a summary number is called a parameter. 

Statistical power 
The probability of correctly determining a positive result (e.g. a change or difference in the population) 
based on sample data. 

Sub-sample 
A sample that will be bulked together with other sub-samples to form a composite for chemical analyses. 

Systematic planning 
A planning process based on a scientific method, and which leads the project to unfold logically. 
Systematic planning includes established management and scientific elements. In the assessment of site 
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contamination, it includes the application of the DQOs process and development of both a CSM and an 
SAQP. 

Variable 
A characteristic, number or quantity that is the subject of the inquiry. In the assessment of site 
contamination, it is usually continuous numerical variables that are being assessed, for example the 
concentration of a contaminant in soil, soil gas or water. Discrete or discontinuous variables are at times 
considered, such as the number of fish in a waterbody. These are both quantitative variables in that they 
are derived by measurements.  
Qualitative or categorical variables include ordinal or ranked variables and nominal variables. Ordinal 
variables are observations that take a value that can logically be ordered or ranked, such as first, 
second, third, whereas nominal observations take a value that cannot be organised in a logical 
sequence, such as presence or absence. Categorical variables are not commonly used in the 
assessment of site contamination and are not considered further. 

Variance 
The average squared distance of population or sample data points from the associated mean. 

Weight of evidence/lines of evidence 
‘Weight of evidence’ describes the process of collecting, analysing and evaluating a combination of 
different qualitative, semi-quantitative or quantitative lines of evidence to make an overall assessment of 
contamination.  
Applying a weight-of-evidence process incorporates judgements about the quality, quantity, relevance 
and congruence of the data contained in the different lines of evidence (ANZG 2018). 
  



27 

8. References 
Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and 
Resource Management Council of Australia and New Zealand (ARMCANZ) 2000, Australian and New 
Zealand Guidelines for Fresh and Marine Water Quality, paper no. 4, ANZECC and ARMCANZ, 
Canberra. 
British Standards Institution (BSI) 2013, Investigation of Potentially Contaminated Sites: Code of 
Practice, BS 10175:2011+A1:2013, BSI Standards Limited. 
Clements L, Palaia T & Davis J 2009, Characterisation of Sites Impacted by Petroleum Hydrocarbons: 
National Guideline Document, CRC Care Technical Report no. 11, CRC for Contamination Assessment 
and Remediation of the Environment, Adelaide. 
CRC Care 2013, Petroleum Hydrocarbon Vapour Intrusion Assessment: Australian Guidance, CRC 
CARE Technical Report no. 23, CRC for Contamination Assessment and Remediation of the 
Environment, Adelaide. 
Crumbling DM 2002, In search of representativeness: evolving the environmental data quality model, 
Quality Assurance, vol.9, pp.179–90, http://cluin.org/download/char/dataquality/dcrumbling.pdf. 
Davis GB, Wright J & Patterson BM 2009, Field Assessment of Vapours, CRC CARE Technical Report 
no. 13, CRC for Contamination Assessment and Remediation of the Environment, Adelaide. 
Department of Agriculture and Water Resources 2018, Australian & New Zealand Guidelines for Fresh 
and Marine Water Quality, Department of Agriculture and Water Resources, Canberra, 
www.waterquality.gov.au/anz-guidelines. 
Department of Environment and Conservation (DEC) 2004, New South Wales (NSW) Australian River 
Assessment System (AUSRIVAS) Sampling and Processing Manual, DEC NSW, Sydney. 
Department of Environment and Conservation (DEC) 2005a, Contaminated sites: Guidelines for 
assessing former orchards and market gardens, DEC 2005/195, DECCW NSW, Sydney. 
Department of Environment and Conservation (DEC) 2005b, Information for the assessment of former 
gasworks sites, DEC 2005/237, DECCW NSW, Sydney. 
Department of Environment and Conservation (DEC) 2007, Contaminated sites: Guidelines for the 
assessment and management of groundwater contamination, DEC 2007/144, DEC NSW, Sydney. 
Department of Environment, Climate Change and Water (DECCW) 2009, Guidelines for implementing 
the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 
2008, DECCW 2009/653, DECCW NSW, Sydney. 
Department of Environment, Climate Change and Water (DECCW) 2010, Vapour intrusion: Technical 
practice note, DECCW 2010/774, DECCW NSW, Sydney. 
Department of Environment (DoE) Queensland 1998, Draft guideline for the assessment & management 
of contaminated land in Queensland, DoE, Brisbane. 
Department of Environment and Science (DES) Queensland 2018, Monitoring and Sampling Manual: 
Environmental Protection (Water) Policy 2009 [sic], DES, Brisbane.  
Department of Health and Ageing and EnHealth Council 2012, Environmental Health Risk Assessment: 
Guidelines for Assessing Human Health Risks from Environmental Hazards, Department of Health and 
Ageing, Canberra. 
Devore J & Farnum N 2005, Applied Statistics for Engineers and Scientists, 2nd Edition, Brooks/Cole, 
Cengage Learning, Belmont CA. 
Environment Protection Authority (EPA) 1995, Contaminated sites: Guidelines for the vertical mixing of 
soil on former broad-acre agricultural land, EPA 2003/28, NSW EPA, Sydney. 
Environment Protection Authority (EPA) 1997, Contaminated sites: guidelines for assessing banana 
plantation sites, EPA 97/37, NSW EPA, Sydney. 



28 

Environment Protection Authority (EPA) 2012, Guidelines for the assessment and management of sites 
impacted by hazardous ground gases, EPA 2012/0932, NSW EPA, Sydney. 
Environment Protection Authority (EPA) 2014a, Technical note: Investigation of service station sites, 
EPA 2014/0315, NSW EPA, Sydney. 
Environment Protection Authority (EPA) 2014b, Resource Recovery Order under Part 9, Clause 93 of 
the Protection of the Environment Operations (Waste) Regulation 2014: The excavated natural material 
order 2014.  
Environment Protection Authority (EPA) 2014c, Best practice note: Landfarming, EPA 2014/0323, NSW 
EPA, Sydney. 
Environment Protection Authority (EPA) 2015a, Guidelines on the duty to report contamination under the 
Contaminated Land Management Act 1997, EPA 2015/0164, NSW EPA, Sydney. 
Environment Protection Authority (EPA) 2015b, Technical note: Light non-aqueous phase liquid 
assessment and remediation, EPA 2015/0553, NSW EPA, Sydney. 
Environment Protection Authority (EPA) 2016, Guidance document: Designing sampling programs for 
sites potentially contaminated by PFAS, EPA 2016/0718, NSW EPA, Sydney. 
Environment Protection Authority (EPA) 2017, Contaminated land management: Guidelines for the NSW 
site auditor scheme (3rd edition), EPA 2017P0269, NSW EPA, Sydney. 
Environment Protection Authority (EPA) 2018, Guidelines on resource recovery Orders and Exemptions: 
For the land application of waste materials as fill, EPA 2017/P0392, NSW EPA, Sydney. 
Environment Protection Authority (EPA) South Australia 2005, Composite soil sampling in site 
contamination assessment and management, Government of South Australia, Adelaide. 
Environment Protection Authority (EPA) Victoria 2009, Industrial waste resource guidelines: Soil 
sampling, IWRG702. 
Ferguson CC 1992, The statistical basis for spatial sampling of contaminated land, Ground Engineering, 
vol. 25, no. 6, pp. 34–38. 
Gilbert RO 1987, Statistical methods for environmental pollution monitoring, John Wiley & Sons Inc., 
Brisbane. 
Gray JM & Murphy BW 1999, Parent material and soils: A guide to the influence of parent material on 
soil distribution in eastern Australia, Technical Report No. 45, NSW Department of Land and Water 
Conservation, Sydney. 
Hamon RE, Mclaughlin MJ, Gilkes RJ, Rate AW, Zarcinas B, Robertson A, Cozens G, Radford N & 
Bettenay L 2004, Geochemical indices allow estimation of heavy metal background concentrations in 
soils, Global Biogeochemical Cycles, vol. 18, GB1014. 
Harr ME 1987, Reliability-Based Design in Engineering, McGraw-Hill, New York. 
HEPA 2018, PFAS National Environmental Management Plan, Heads of EPAs Australia and New 
Zealand. 
Interstate Technology and Regulatory Council (ITRC) 2007, Vapor intrusion pathway: A practical 
guideline, VI-1, ITRC Vapor Intrusion Team, Washington DC, USA, www.itrcweb.org/Documents/VI-
1.pdf. 
Interstate Technology and Regulatory Council (ITRC) 2012, Incremental sampling methodology, (ISM-1), 
ITRC, Washington DC, USA, www.itrcweb.org/Guidance/ListDocuments?topicID=11&subTopicID=16. 
Interstate Technology and Regulatory Council (ITRC) 2013, Groundwater statistics and monitoring 
compliance: Statistical tools for the project life cycle, GSMC-1, ITRC, Washington DC, USA, 
http://www.itrcweb.org/gsmc-1/. 
Interstate Technology and Regulatory Council (ITRC) 2017, Naming conventions and physical and 
chemical properties per- and polyfluoroalkyl substances (PFAS), ITRC, Washington DC. 
Lock WH 1996, Composite sampling, in National Environmental Health Forum Monographs, Soil Series 
No. 3, South Australian Health Commission, Adelaide. 

http://www.itrcweb.org/Documents/VI-1.pdf
http://www.itrcweb.org/Documents/VI-1.pdf
http://www.itrcweb.org/Guidance/ListDocuments?topicID=11&subTopicID=16
http://www.itrcweb.org/gsmc-1/


29 

McDougall KW & Macoun TW 1996, Guidelines for the Assessment and Clean Up of Cattle Tick Dip 
Sites for Residential Purposes, NSW Agricultural in conjunction with CMPS&F Environmental, 
Wollongbar NSW. 
Naidu R, Jit J, Kennedy B & Arias V 2016, Emerging contaminant uncertainties and policy: The chicken 
or the egg conundrum, Chemosphere, vol. 154, pp. 385–390.  
National Environment Protection Council (NEPC) 2013, National Environment Protection (Assessment of 
Site Contamination) Amendment Measure 2013 (No. 1), Schedule A and Schedules B(1)–B(9), National 
Environment Protection Council, Canberra. 
Nickerson RS 2000, Null hypothesis significance testing: A review of an old and continuing controversy, 
Psychological Methods, vol. 5, no. 2, pp. 241–301. 
New Jersey Department of Environmental Protection (NJDEP) 2005, Vapor intrusion guidance. 
Northern Territory Environment Protection Authority (EPA) 2013, Guidelines on conceptual site models, 
NT EPA, Darwin. 
Office of Environment and Heritage 2011, Guidelines for consultants reporting on contaminated sites, 
OEH 2011/0650, NSW OEH, Sydney. 
Perezgonzalez JD 2015, Fisher, Neyman–Pearson or NHST? A tutorial for teaching data testing, 
Frontiers in Psychology, vol. 6, article 223, p. 1. 
Provost LP 1984, Statistical Methods in Environmental Sampling, in Schweitzer GE and Santolucito JA 
(eds), Environmental Sampling for Hazardous Wastes, American Chemical Society, Washington DC. 
Reinhart A 2015, Statistics Done Wrong: The Woefully Complete Guide, No Starch Press, San Francisco 
CA. 
South Australian Health Commission (SAHC) 1995, Guidelines for the composite sampling of soils, 
SAHC, Adelaide. 
Simpson S and Batley G (eds) 2016, Sediment Quality Assessment: A Practical Guide, CSIRO 
Publishing, Melbourne.  
US Environmental Protection Agency (USEPA) 1996, Soil Screening Guidance: User’s Guide (2nd 
edition), Attachment B, Soil Screening DQOs for Surface Soils and Subsurface Soils, EPA/540/R-
96/018, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2000, Data Quality Objectives Process for Hazardous 
Waste Site Investigations (QA/G-4HW), EPA/600/R-00/007, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2001, Guidance on Data Quality Indicators (QA/G-5i), 
USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2002, Guidance on Environmental Data Verification and 
Data Validation (QA/G-8), EPA/240/R-02/004, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2002, Guidance on Choosing a Sampling Design for 
Environmental Data Collection for Use in Developing a Quality Assurance Project Plan (QA/G-5S), 
EPA/240/R-02/005, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2002, Guidance for Quality Assurance Project Plans 
(QA/G-5), EPA/240/R-02/009, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2006, Data Quality Assessment: Statistical Methods for 
Practitioners (QA/G-9S), EPA/240/B-06/003, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2006, Guidance on Systematic Planning Using the Data 
Quality Objectives Process (QA/G-4), EPA/240/B-06/001, Appendix: Derivation of sample size formula 
for testing mean of normal distribution versus an action level, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2006, Data Quality Assessment: A Reviewer’s Guide 
(QA/G-9R), EPA/240/B-06/002, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2007, Guidance for Preparing Standard Operating 
Procedures (SOPs) (QA/G-6), EPA/600/B-07/001, USEPA, Washington DC. 



30 

US Environmental Protection Agency (USEPA) 2009, Statistical Analysis of Groundwater Monitoring 
Data at RCRA Facilities: Unified Guidance, EPA 530/R-09-007, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2014, Test Methods for Evaluating Solid Waste: 
Physical/Chemical Methods Compendium (SW-846), USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2015a, ProUCL Version 5.1.002: Technical Guide: 
Statistical Software for Environmental Applications for Data Sets with and without Nondetect 
Observations, EPA/600/R-07/041, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2015b, ProUCL Version 5.1.002: User Guide: Statistical 
Software for Environmental Applications for Data Sets with and without Nondetect Observations, 
EPA/600/R-07/041, USEPA, Washington DC. 
Wendelberger J & Campbell K 1994, Non-Detect Data in Environmental Investigations, American 
Statistical Association, Toronto, Canada. 
Wilson S, Card G & Haines S 2009, Ground Gas Handbook, Whittles Publishing, Dunbeath, UK. 
 
  



31 

Appendix A: Descriptive statistics 
This appendix provides a brief review of the descriptive statistics commonly used for summarising data. 
The following appendices show how they are used, giving specific procedures and worked examples. 

Range and percentiles 
The range of a dataset measures the spread between the highest and lowest observed values in the 
dataset. It can be expressed as an interval, such as a–b, where a is the lowest value and b is the 
highest, or it can be expressed as an interval width, such as b - a = c. While either approach provides an 
appreciation of the range of the observed values, the maximum value is of particular concern in the 
assessment of site contamination, and the range is generally more informative as an interval, as it shows 
the spread and the extremes of the data. 
As the range only measures the spread between highest and lowest values, other measures – such as 
the standard deviation or the interquartile range (IQR) – are needed to more fully describe the data 
distribution. 

Maximum 
The maximum observed value in a dataset is important in the assessment of site contamination, as it 
generally provides a conservative estimate of the potential exposure risks. It is usually assumed that if 
the maximum is below the action level, then the site will be suitable for the associated land use. But this 
assumption holds true only if there is enough data, and the data is representative. If this is not the case, 
the maximum observed value may overestimate or underestimate the risk. 
In cases where the consequences of decision error will be severe, or the number of samples seems 
insufficient to estimate the population mean from the sample mean, the maximum value can be used as 
an estimate of the population mean and termed max test for statistical analysis. This is often done for 
judgmental samples, such as with soil gas or groundwater data. Where this approach is used, it should 
be appropriately documented and justified.  

Percentiles and quartiles 
Percentiles, as suggested by the name, are descriptive values used to equally split a dataset into 100 
parts. The Xth percentile in a dataset has a value greater than or equal to X% of the data – for example, 
the 80th percentile has a value greater than or equal to 80% of the data. 
Percentiles can be used as the statistical parameter of interest, for instance for comparing to criteria or 
action levels. For example, ANZG (2018) states that “[f]or toxicants, it is recommended that action is 
triggered if the 95th percentile of the test data exceeds the guideline value”.  
Quartiles are used to break up the dataset into four equal parts, providing an indication of the 
distribution and variance of the data. When observations are placed in ascending order by value: 

• the first quartile, Q1, also called the lower quartile, is the value of the observation at or below which a 
quarter (25%) of observations lie, and is the 25th percentile  

• the second quartile, Q2, is the median value at or below which half (50%) of observations lie, and is 
the 50th percentile 

• the third quartile, Q3, also called the upper quartile, is the value of the observation at or below which 
three-quarters (75%) of the observations lie and is the 75th percentile. 

The interquartile range (IQR) is used as a measure of the spread of the dataset, which also indicates its 
dispersion. It is the difference between the upper and lower quartiles (Q3 - Q1 = IQR) – that is, it 
measures the spread between the 25th and 75th percentiles. The IQR spans 50% of a dataset and 
eliminates the influence of outliers as it excludes the highest and lowest quarters. 
Percentiles and quartiles can be used for datasets with limited observations, and for all types of data 
collection, as their use requires no assumptions about the underlying distribution or whether the samples 
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were judgmental or probabilistic. However, ANZG (2018) notes that the precision with which percentiles 
are estimated depends heavily on the sample size, with at least 13 samples need to estimate the 25th 
and 75th percentiles with an associated 95% confidence interval, and a minimum of 36 samples needed 
to estimate the 10th and 90th percentiles. Even larger sample sizes are required to estimate extreme 
percentiles, i.e. the 5th and 95th. 
As the IQR does not depend on extreme values, it can be used when a dataset includes non-detects (at 
least where < 25% of the data is below the limits of reporting (LORs)). For datasets that are not nearly-
normal, or which contain extreme values, the IQR may be more representative of the dispersion of the 
data than the standard deviation, can be affected by extreme observations. The IQR is therefore 
described as a robust estimate. 
Appendix B shows how to determine quartiles. 

Central tendency  
Central tendency is the central or typical value for a probability distribution, and may be considered the 
average value in a dataset. It is generally described by the mode, median, or, most commonly, the 
mean, and indicates where a sample distribution is centred. While these estimates can generally be 
regarded as being representative or typical of the data, for small and/or highly skewed datasets they 
should be considered as approximations only. 
Appendix C shows how to determine measures of central tendency. 

Mode 
The mode is the value that occurs most frequently and is determined by counting the number of times 
each value occurs. Since a sample mode may not exist or may not be unique (e.g. the distribution may 
be bimodal), it is rarely used as a measure of central tendency, although it can be useful for qualitative 
data such as categories.  

Median 
The median is the middle value of the distribution: half the data points have values greater than the 
median, and half have values less than it. The sample median is not influenced by extreme values and 
so can be used when the underlying distribution is unknown: it is commonly used to describe the centre 
of the distribution when non-parametric methods are employed. The median can also be used if non-
detects are present, although care should be taken if there are many of them. In the event that a median 
is found to be non-detect while there are locations reporting values above detection levels, then 
consideration should be given to stratifying the site. 
A number of guidelines recommend the use of median values in certain circumstances. For example: 

• NEPM (2013, B2) states that when using non-parametric approaches, the median can be used to 
describe the centre of the distribution 

• ANZG (2018) notes that for comparing test data with guideline values for physico-chemical stressors, 
“[a] trigger for further investigation of the test water body will be deemed to have occurred when the 
median concentration of a particular measurement parameter in n independent samples taken at the 
test water body exceeds the 80th percentile (or is below the 20th percentile if ‘less is worse’) of the 
same measurement parameter at the reference site”. 

Arithmetic mean 
The arithmetic mean is commonly referred to as the average and is used to describe the centre of the 
data distribution. The arithmetic mean is denoted as µ (lowercase Greek letter mu) for the population 
mean or as  (x-bar) for the sample mean. In the assessment of site contamination, the population mean 
is generally not known, so the sample mean is used as an estimate of the population mean. 
Larger sample sizes tend to produce sample means that are closer to the population mean, as in theory 
extreme data values balance each other out. But when sample sizes are small, the arithmetic mean can 

https://en.wikipedia.org/wiki/Probability_distribution
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be affected by outliers, and when judgmental sampling is used, the arithmetic mean is often a biased 
measure of central tendency.  
The mean value may be more representative of site contamination than the maximum value, by 
providing a better estimate of the actual contaminant concentrations that receptors would be exposed to 
over a period of time. However, it is important that small areas of high concentration (hotspots) are not 
ignored by averaging with lower values from other parts of the site or the decision area.  
The arithmetic mean is calculated by dividing the sum of the sample measurements by the number of 
samples.  

Geometric mean 
The geometric mean is similar to the arithmetic mean, in that it is also a measure of the central tendency 
of the distribution of a population or sample. This is also described as the arithmetic mean of the 
logarithmic scale of a dataset, or the nth root of the product of n numbers.  
Due to the log transformation involved in the calculation, the geometric mean is not as affected by 
outliers and is commonly used when the data is skewed or log-normally distributed. Whilst this may be 
beneficial in some instances, the curvature of the logarithmic function may downplay the higher values in 
favour of the lower ones.  
Higher values are important in the assessment of site contamination. If assumptions regarding the 
condition of a site are based on the geometric mean, downplaying higher values may increase the 
chance of a Type I error. Because of this potential bias, you should not use solely geometric means 
(including back transformation) to compare against action levels, and if you do use them you should 
provide appropriate justification. Where log-transformed data are approximately normal (or at least 
reasonably symmetric) back transformation may be appropriate (USEPA 2009 and Viveros 1997), but for 
skewed datasets that are not log-normal, the geometric mean is likely to be a poor estimator of 
population mean (Parkhurst 1998). 

Variability 
An important aspect of data analysis is determining the variability of the sampling data. Calculating 
variability can provide an indication of how heterogenous the variables are likely to be across a decision 
area, and how representative the measures of central tendency are of the sampling data. The variability 
of data is measured by variance, standard deviation and the coefficient of variation.  
See Appendix D for how to determine measures of variability. 

Variance 
Variance is the average squared distance of each data point from the sample mean. It can be affected 
by extreme values and by large numbers of values below the LORs. 

Standard deviation 
The standard deviation is calculated by taking the square root of the variance and provides an indication 
of the data’s typical deviation from the mean. The standard deviation of a population is denoted as σ 
(Greek lowercase sigma), and for a sample by s. The sample standard deviation is commonly used in 
the site contamination assessment, as the standard deviation of the population is generally not known. 
A large sample variance or standard deviation indicates that the data points are not closely clustered 
around the mean. Both the variance and the standard deviation are strongly influenced by the number of 
samples collected, and influenced by extreme values in either direction. 

Coefficient of variation 
The coefficient of variation (CV), or relative standard deviation (RSD), is a measurement of the relative 
homogeneity of a distribution. The CV is determined as the standard deviation of a distribution divided by 
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the mean of the distribution, i.e. CV = s/ for sample data. The RSD is determined in the same way, but 
expressed as a percentage, i.e. a CV of 0.5 = an RSD of 50%. 

Low CV values, e.g. 0.5 or less, indicate a fairly homogeneous contaminant distribution, while CVs with 
values over I–1.2 imply that the concentration distribution of a contaminant is heterogeneous. 
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Appendix B: Determining quartiles 
Percentiles are descriptive values used to split a set of data into 100 equal parts, providing a 
representation of the sampling data that can be used for either normal or non-normal distributions. A 
percentile provides the value that a given percentage of observations in a dataset are less than or equal 
to (for example, 25% of observations in the dataset have values at or below the value of the 25th 
percentile). 
Percentiles can be used in the statistical analysis of datasets that have limited observations. The dataset 
can also be divided by quartiles, which are the 25th, 50th and 75th percentiles. 

Determination  
To calculate percentiles, values are ordered from the lowest to the highest and assigned a rank, with the 
required percentile calculated using the formula shown below. While this procedure can be used for 
small datasets, it is commonly conducted using spreadsheets or statistical packages. Note that all 
percentiles of sample data are biased estimators of population percentiles.  
The values are ranked from lowest to highest: 
 

X(1), X(2), X(3), X(4) …, X(n) 
 
The pth percentile is calculated by: 
 

yp = (1− f) × Xi  +  f × X(i+1) 

 
Where: 
yp the value of the pth percentile 
pth the specified percentile 
r (n – 1)p + 1 
floor(r) calculate r and discard decimals 
i floor(r) 
f r – i 
Xi the value of the ith rank 
X(i + 1) the value of the ith + 1 rank 
 
The data in Table 1, below, is used for the worked examples in this and the following appendices.  
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Table 1 Summary of analytical results – metals in soil (mg/kg)  

Sample ID or statistic Arsenic Chromium Copper Lead Nickel Zinc 

Limits of reporting 5 2 5 5 2 5 

Analytical       

Analytical sample B2-01 103 12 34 20 18 11 

Analytical sample B2-02 50 21 30 7 2 10 

Analytical sample D2-01 43 26 83 17 14 35 

Analytical sample D2-02 9 10 29 14 5 12 

Analytical sample A4-01 203 4 260 18 12 232 

Analytical sample A4-02 54 5 55 17 9 41 

Analytical sample C4-01 341 19 401 133 7 543 

Analytical sample C4-02 34 17 46 16 10 13 

Analytical sample B6-01 71 18 24 14 5 9 

Analytical sample B6-02 14 6 8 17 12 5 

Analytical sample D6-01 62 11 51 15 3 36 

Analytical sample D6-02 6 4 18 16 24 10 

Analytical sample A8-01 27 17 61 16 4 24 

Analytical sample A8-02 7 10 38 20 13 10 

Analytical sample C8-01 24 15 39 12 6 8 

Analytical sample C8-02 13 16 17 14 19 7 

Descriptive statistics       

Number of samples 16 16 16 16 16 16 

Number of detects 16 16 16 16 16 16 

Percentage non detects 0% 0% 0% 0% 0% 0% 

Maximum 341 26 401 133 24 543 

Third quartile 64.3 17.3 56.5 17.3 13.3 35.3 

Median value 38.5 13.5 38.5 16.0 9.4 11.5 

First quartile 13.8 9.0 27.8 14.0 5.2 9.8 

Minimum 6 4 8 7 2 5 

Arithmetic average 66.3 13.2 74.6 22.9 10.2 62.9 

Geometric average 35.2 11.4 43.5 17.3 8.3 20.0 

Mode - 10 - 17 12 10 

Variance 7,792.2 42.4 10,988.8 872.1 39.7 19,410.1 

Standard deviation 88.3 6.5 104.8 29.5 6.3 139.3 

Coefficient of variation 
(CV) 

1.3 0.5 1.4 1.3 0.6 2.2 

Inferential statistics       

Standard error of the 
mean (SE) 

22.1 1.6 26.2 7.4 1.6 34.8 

Relative standard 
deviation (RSD) 

133.1% 49.4% 140.5% 129.1% 61.9% 221.6% 

Margin of error (MoE) 47.0 3.5 55.9 15.7 3.4 74.2 
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Sample ID or statistic Arsenic Chromium Copper Lead Nickel Zinc 

Maximum probability 
error (MPE) 

70.9% 26.3% 74.9% 68.8% 33.0% 118.1% 

95% LCL two-sided 
Student’s t 

19.3 9.7 18.7 7.1 6.8 -11.4 

95% LCL two-sided 
Student’s t 

113.4 16.7 130.5 38.6 13.5 137.1 

95% LCL one-sided 
Student’s t 

105.0 16.0 120.5 35.8 13.0 123.9 

ProUCL determination 120.5 16.0 135.2 55.1 13.0 214.7 

Method recommended* Gamma Student’s t H-UCL Chebyshev Student’s t Chebyshev 

Criteria and number of 
samples 

      

HIL-A land use 
(NEPC 2013, B1) 

100 100 6,000 300 400 7,400 

Number of samples to 
be used (whole number) 
– CRV method 

44 2 2 2 2 2 

Number of samples – 
MPE method 

15 18 16 16 14 15 

Worked example  
The metals data in mg/kg from Table 1 is used in this example. To determine the 25th percentile of the 
sampling data for arsenic (As), we proceed as follows.  
The values are ordered from lowest to highest and assigned a rank: 
 

X(1) = 6, X(2) = 7, X(3) = 9, X(4) = 13, X(5) = 14, X(6) = 24, X(7) = 27, X(8) = 34, 
 

X(9) = 43, X(10) = 50, X(11) = 54, X(12) = 62, X(13) = 71, X(14) = 103, X(15) = 203, X(16) = 341 
 
Bolded values are X(i) and X(i + 1). 
The input parameters are calculated for the 25th percentile: 
 

r = (n− 1)p + 1  
 

r = (16 − 1) 0.25 + 1 
 

r = 4.75 
 

i = 4 
 

f = r− i  

 
f = 0.75 
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The 25th percentile is calculated as: 
 

y(0.25) = (1− f) × Xi + f × X(i+1) 

 

y(0.25) = (1− 0.75) × 13 + 0.75 × 14 

 

y(0.25) = 13.8 

 
The 25th percentile of the sampling data for As is 13.8 mg/kg. 

Reference 
US Environmental Protection Agency (USEPA) 2009, Statistical Analysis of Groundwater Monitoring 
Data at RCRA Facilities: Unified Guidance, EPA 530/R-09-007, USEPA, Washington DC. 
  



39 

Appendix C: Determining measures of 
central tendency 
The central tendency is a central or typical value for a probability distribution, and may be considered 
the average value in a set of data. Methods for calculating the median, the arithmetic mean and the 
geometric mean are shown below. 
The mode is the value that occurs with the greatest frequency (that is, the greatest number of times): to 
calculate it, simply count the number of times each value occurs. As the mode does not always exist or 
may not be unique, it is the value of central tendency that is least commonly used, although it can be 
useful for describing qualitative data.  

Determination  
Measures of central tendency are determined as follows. 

Median with an odd number of samples 
 

median = X(n+1)/2 

 

Median with an even number of samples 
 

median =  
1
2  �X�n 2� � +  X�n 2� +1�� 

 

Arithmetic mean 
 

sample arithmetic mean =
(X1 + X2 +  … Xn)

n  

 

Geometric mean 
 

sample geometric mean = �(X1 ×  X2 × …  Xn)n  

 

Worked example  
The metals data in mg/kg from Table 1 is used in this example. To determine the measures of central 
tendency for the sampling data for arsenic (As), we proceed as follows.  

  

https://en.wikipedia.org/wiki/Probability_distribution
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Median 
The values are ordered from lowest to highest and assigned a rank: 
 

X(1) = 6, X(2) = 7, X(3) = 9, X(4) = 13, X(5) = 14, X(6) = 24, X(7) = 27, X(8) = 34, X(9) = 43, 
 

X(10) = 50, X(11) = 54, X(12) = 62, X(13) = 71, X(14) = 103, X(15) = 203, X(16) = 341 
 
Bolded values are X(n/2) and X(n/2 + 1). 
 
As n = 16, an even number, the sample median is determined as: 
 

sample median =  
1
2  �X�n 2� � +  X�n 2� +1�� 

 
 

sample median =  
1
2  �X�16

2� � +  X�16
2� +1�� 

 
 

sample median =  
1
2  �X(8) + X(9)� 

 
 

sample median =  
1
2  [34 +  43] 

 
 

sample median =  38.5 
 
The sample median for As is 38.5 mg/kg. 

Arithmetic mean 

sample arithmetic mean =
(X1 + X2 +  … Xn)

n  

 

sample arithmetic mean =
(103 +  50 + ⋯  13)

16  

 

sample arithmetic mean = 66.3 
 
The sample arithmetic mean for As is 66.3 mg/kg. 
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Geometric mean 
sample geometric mean = �(X1 ×  X2 ×  … Xn)n  

 
 

sample geometric mean = �(103 ×  50 × …  13)16  

 
 

sample geometric mean = 35.2 
 
The sample geometric mean for As is 35.2 mg/kg. 
 
As Table 2 shows, each method provides a different result for the measure of central tendency.  

Table 2 Variation in central tendency by method of calculation 

Method Result (mg/kg) 

Median 38.5 

Arithmetic mean 66.3 

Geometric mean 35.2 

For sample data that is skewed, as in this case, the median and geometric mean are similar, while the 
arithmetic mean is ‘dragged’ to the right because of the outliers in the dataset. For a nearly-normal 
dataset the three measures would be similar.  
Choose the appropriate measure of central tendency to represent the sampling data according to the 
contaminant distribution and the proposed use of the selected measure.  

Reference 
US Environmental Protection Agency (USEPA) 2006, Data Quality Assessment: Statistical Methods for 
Practitioners (QA/G-9S), EPA/240/B-06/003, USEPA, Washington DC. 
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Appendix D: Determining measures of 
variability 
An important aspect of data analysis is determining the variability of the data. Calculating variability can 
provide an indication of how heterogenous a contaminant is likely to be across a site. The variability of 
the data is measured by variance, standard deviation or the coefficient of variation.  
Variance, represented by s2, is simply the average squared distance of each data point from the sample 
mean, and as such can be affected by extreme values and large numbers of values below the limits of 
reporting (LORs). It is used to estimate the population variance σ2. 
The standard deviation of a sample, represented by s, is calculated by taking the square root of the 
variance, and provides an indication of the population’s typical deviation from the mean. The standard 
deviation of the population, represented by σ, is generally unknown in the assessment of site 
contamination, and s is therefore used as an estimate. Note that although s2 is an unbiased estimate of 
σ2, s is a biased estimate of σ. 
The coefficient of variation (CV), or relative standard deviation (RSD), is a measurement of the 
relative homogeneity of a distribution. The CV is the standard deviation of a distribution divided by the 
mean of the distribution. The RSD is determined in the same way but expressed as a percentage. 

Determination 
The methods for determining the measures of variability are shown below. 

Variance 

s2 =
Σ(xi − x̅)2

n −  1  

 

Standard deviation of a sample 

s = �Σ(xi −  x�)2

n −  1  

 

Estimate of standard deviation 
Where sampling data are not available, an estimate of the standard deviation can be made by dividing 
the expected range by six, i.e. three standard deviations in each direction, as this should represent 
approximately 99.7% of a nearly-normal distribution.  
 

σE =  
CH −  CL

6  

 
The relative standard deviation is determined in the same way, but expressed as a percentage, 
i.e. a CV of 0.5 = an RSD of 50%. 
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Coefficient of variation 

CV=
s
x� 

 
Where:  
s2 variance 
xi the value of the sample 

x̅ the arithmetic mean (see Appendix C) 
n number of samples 
s standard deviation 
σE estimate of population standard deviation 
CH estimate of the highest possible value in the sampling area 
CL estimate of the lowest possible value in the sampling area 
CV coefficient of variation 
RSD relative standard deviation 

Worked example 
In this example we determine the measures of variability for the sampling data for arsenic (As) in 
Table 1.  
The values for As, shown in mg/kg, are:103, 50, 43, 9, 203, 54, 341, 34, 71, 14, 62, 6, 27, 7, 24 and 13.  
The number of samples, n, is 16, and the arithmetic average of the sampling data is 66.3. 

Variance 

s2 =
Σ(xi −  x̅)2

n − 1  

 

s2 =
(103− 66.3)2 + (50 − 66.3)2 … (13− 66.3)2

16− 1  

 

s2 =
1,346.9 + 265.7 +⋯  2,840.9

15  

 

s2 = 7,792.2 

Standard deviation 

s = �Σ(xi- x̅)2

n-1  

 

s = �7,792.2 

 

s = 88.3 
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Estimate of standard deviation 

σE =  
CH −  CL

6  

 

σE =  
341 −  6

6  

 

σE =  55.8 
 
In this example, the standard deviation calculated using the sampling data is much greater than the 
estimate of the standard deviation. This is because the sampling data is skewed to the right and does 
not appear to follow a nearly-normal distribution.  
This example shows that, while estimates of standard deviation can be determined when sampling data 
is not available, they should always be used with caution. If you calculated required sample numbers 
using an estimated value such as the one in this example, you would arrive at a number that was too 
low. Accordingly, the sampling data should be used to refine the assumptions made as part of 
systematic planning. 

Coefficient of variation (CV) 

CV = 
s
x̅
 

 

CV =  
88.3
66.3 

 
CV = 1.3 

 

Relative standard deviation (RSD) 
 

RSD = 133.1% 
 
In this example, the CV of 1.3 (equivalent to an RSD of 133.1%) shows a distribution not nearly-normal 
and expected to be skewed to the right. Any statistical inference should assume a log-normal or other 
non-normal distribution and use log-normal or non-parametric methods for analysis.  

Reference 
US Environmental Protection Agency (USEPA) 2006, Data Quality Assessment: Statistical Methods for 
Practitioners (QA/G-9S), EPA/240/B-06/003, USEPA, Washington DC. 
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Appendix E: Assessing contaminant 
distribution 
Here we show an example of the assessment of contaminant distribution, as discussed in Section 2.7, 
as could be done with commonly available spreadsheet and statistical software. The sampling data used 
in this example comes from Table 1. 

Table 3 Graphical presentations of example contamination data 

Figure  Description 

Figure 1 Summary statistics: metals in fill (mg/kg) as box-and-whiskers plots showing minimum, first 
quartile, median, third quartile and maximum 

Figure 2 Summary statistics: metals in fill (mg/kg) as box-and-whiskers plots showing minimum, first 
quartile, median, third quartile and maximum, with adjusted scale 

Figure 3 Standardised summary statistics (values/criteria): metals in fill (%) as box-and-whiskers plots 
showing minimum, first quartile, median, third quartile and maximum 

Figure 4 Standardised summary statistics (values/criteria): metals in fill (%) as box-and-whiskers plots 
showing minimum, first quartile, median, third quartile and maximum, with adjusted scale 

Figure 5 Multiple histograms for metals in fill (mg/kg) 

Figure 6 Q–Q plot for arsenic (mg/kg) 

Figure 7 Q–Q plot for chromium (mg/kg) 

Figure 8 Q–Q plot for copper (mg/kg) 

Figure 9 Q–Q plot for lead (mg/kg) 

Figure 10 Q–Q plot for nickel (mg/kg) 

Figure 11 Q–Q plot for lead (mg/kg). 

These outputs suggest the following regarding the sampling data: 

• Figure 1 and Figure 2 – the data is generally skewed to the right in the cases of As, Cu, Pb and Zn, 
as a result of extreme values in the dataset. Cr and Ni look generally symmetrically distributed, 
suggesting a nearly-normal distribution 

• Figure 3 and Figure 4 – in relation to the criteria for HIL-A residential with accessible soil, only As 
exceeds 50% of its criterion, with the maximum As value exceeding the criterion by 341%, 
i.e. > 250% of the criterion. Cu, Pb and Zn are elevated, but are below HIL-A 

• Figure 5 – the histograms confirm that As, Cu, Pb and Zn are right-skewed because of extreme 
values. As the sample size was small (< 30), the normality of the distribution cannot be confirmed 
using histograms 

• Figure 6 to Figure 11 – the Q–Q plots show that As, Cu, Pb and Zn are unlikely to be nearly-normally 
distributed, and consequently parametric methods that assume nearly-normality cannot be used for 
statistical inference. Instead, some form of transformation is required or another distribution type 
should be used.  

For Cr and Ni, the Q–Q plots suggest a nearly-normal distribution, and parametric methods that assume 
near-normality may be appropriate for analysis.  
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Figure 1 Summary statistics, metals in fill (mg/kg) – minimum, first quartile, median, third quartile, maximum 

Source: Marc Salmon, Easterly Point Environmental Pty Ltd 

 
Figure 2 Summary statistics, metals in fill (mg/kg) – minimum, first quartile, median, third quartile, maximum – scale adjusted 

Source: Marc Salmon, Easterly Point Environmental Pty Ltd 
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Figure 3 Standardised summary statistics, metals in fill (%) – metals data relative to acceptance criteria 

Source: Marc Salmon, Easterly Point Environmental Pty Ltd 

 
Figure 4 Standardised summary statistics, metals in fill (%) – metals data relative to acceptance criteria – scale adjusted 

Source: Marc Salmon, Easterly Point Environmental Pty Ltd  
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Figure 5 Multiple histograms for metals in fill (mg/kg) – data from Table 1  

The x-axis shows concentation of the metal (in mg/kg) and the y-axis shows the number of samples.  
Outputs from USEPA’s ProUCL, created by Marc Salmon, Easterly Point Environmental Pty Ltd 
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Figure 6 Q–Q plot for arsenic (mg/kg) 

Outputs from USEPA’s ProUCL, created by Marc Salmon, Easterly Point Environmental Pty Ltd 

 
Figure 7 Q–Q plot for chromium (mg/kg)  

Outputs from USEPA’s ProUCL, created by Marc Salmon, Easterly Point Environmental Pty Ltd 
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Figure 8 Q–Q plot for copper (mg/kg) 

Outputs from USEPA’s ProUCL, created by Marc Salmon, Easterly Point Environmental Pty Ltd 

 
Figure 9 Q–Q plot for lead (mg/kg) 

Outputs from USEPA’s ProUCL, created by Marc Salmon, Easterly Point Environmental Pty Ltd 
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Figure 10 Q–Q plot for nickel (mg/kg)  

Outputs from USEPA’s ProUCL, created by Marc Salmon, Easterly Point Environmental Pty Ltd 

 
Figure 11 Q–Q plot for zinc (mg/kg) 

Outputs from USEPA’s ProUCL, created by Marc Salmon, Easterly Point Environmental Pty Ltd 
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Appendix F: One-sample t-test 
hypothesis testing 
When a decision requires the comparison of a sampled population to a target value, such as a specified 
health investigation level (HIL), a one-sample t-test can be used. This is a parametric method, and 
assumes a nearly normal distribution, at least for sample sizes of < 30: it is not suitable for highly 
skewed datasets. See USEPA (2006, G-9S) for non-parametric methods. 

Determination  
Establish the null hypothesis (H0) and alternative hypothesis (HA). EPA policy is to always assume that 
the site or decision area is contaminated, so the null hypothesis is always written as: 
 

H0: µ > criterion or action level 
 
The alternative hypothesis for a one-sided test is then: 
 

HA: µ ≤ criterion or action level 
 
The test statistic (t0) is calculated using the t-score formula: 
 

t0 =  
x̅− C
s
√n�

 

 
Where: 
µ population mean 
t0 test statistic 

 sample mean 
C criterion or action level 
s sample standard deviation  
n number of samples 

tα critical value. 

 
 

The critical value (tα) is determined from a table of critical values of Student’s t-distribution (see Table 4) 
or by using an appropriate software program. The confidence level (1 – α) and the degrees of freedom 
(n – 1) are used to select tα. 
The test statistic is then compared to the critical value, and the following decisions made: 

• if t0 < tα, then fail to reject the null hypothesis that the true population mean is greater than the 
criterion or action level 
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• if t0 > tα, then reject the null hypothesis that the true population mean is greater than the criterion or 
action level and accept the alternative hypothesis that the true population mean is less than or equal 
to the criterion or action level. 

Whereas the signs of t0 and tα are important in regard to whether an upper-tailed or lower-tailed test is 
being conducted, when comparing t0 to tα, it is the absolute values that are compared. 
The probability or p-value is also determined, either approximately from a table of critical values of 
Student’s t-distribution (see Table 4) or by using an appropriate software program. This is then 
compared to the selected value of alpha (α), with the following decisions made: 

• if p-value > α, then fail to reject the null hypothesis that the true population mean is greater than the 
criterion or action level. 

• if p-value < α, then reject the null hypothesis that the true population mean is greater than the 
criterion or action level and accept the alternative hypothesis that the true population mean is less 
than or equal to the criterion or action level. 
While the sign of the p-value is important in regard to whether an upper-tailed or lower-tailed test is 
being conducted, when comparing the p-value to α it is the absolute values that are compared. 

As critical values and p-values are mathematically related, either approach will always provide the same 
conclusion.  

Worked example  
In this example we use the arsenic (As) and lead (Pb) data from Table 1 to determine whether the null 
hypothesis (H0) should be rejected in favour of the alternative hypothesis (HA). The selected criteria are 
the HILs for a residential land use (HILs-A), and the test is to be conducted at a confidence level of 95%, 
i.e. α = 0.05. 
The null hypothesis is: 

H0: µ > criterion 
 
The alternative hypothesis is then: 

HA: µ ≤ criterion. 
 
The test statistic (t0) is calculated using the t-score formula: 
 

t0 =  
x̅−  C
s
√n�

 

 
For As, n = 16,  = 66.3, s = 88.3 and HIL-A = 100, such that: 
 

t0 = 
66.3 −  100

88.3
√16�

 

 
t0 =  −1.53 
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For Pb, n = 16,  = 22.9, s = 29.5 and HIL-A = 300, therefore: 
 

t0 = 
22.9 −  300

29.5
√16�

 

 
t0 =  −37.54 

 
From a table of critical values of Student’s t-distribution (see Table 4), at a confidence level of 95% for 
15 degrees of freedom, tα = 1.75. 

Critical value 
For As, as 1.53 < 1.75, i.e. t0 < tα, then fail to reject the null hypothesis that the true population mean is 
greater than the criterion. 

For Pb, as 37.54 > 1.75, i.e. t0 > tα, then reject the null hypothesis that the true population mean is 
greater than the criterion and accept the alternative hypothesis that the true population mean is less than 
or equal to the criterion. 

P-value 
For As, from a table of critical values of Student’s t-distribution (see Table 4), the p-value is between 0.1 
and 0.05, i.e. tα is between 1.34 and 1.75. Using a software package, the p-value is calculated to be 
0.074. As 0.074 > 0.05, i.e. the p-value > α, then fail to reject the null hypothesis that the true population 
mean is greater than the criterion. 

For Pb, from a table of critical values of Student’s t-distribution, the p-value is < 0.005, i.e. tα is > 2.95. 
Using a software package, the p-value is calculated to be 1.5 x 10-16. As 1.5 x 10-16 < 0.05, i.e. p-
value < α, then reject the null hypothesis that the true population mean is greater than the criterion and 
accept the alternative hypothesis that the true population mean is less than or equal to the criterion.  

Critical region  
In the case of As, t0 does not fall within the critical region (the area beyond the critical value, tα). It is 
therefore unlikely that the observed test statistic is more extreme than would be expected if the null 
hypothesis were true. Similarly, as the p-value > α, the probability of observing a p-value as extreme as 
0.074 would be high, if H0 were true. Based on both the critical value approach and the p-value 
approach, there is insufficient evidence at a 95% confidence level to conclude that the population mean 
for As < HIL-A. 
In the case of Pb, t0 falls within the critical region, and it is likely that the observed test statistic is more 
extreme than would be expected if the null hypothesis were true. And, as the p-value < α, the probability 
of observing a p-value as extreme as 1.5 x 10-16 would be low, if H0 were true. Based on both the critical 
value approach and the p-value approach, there is sufficient evidence at a 95% confidence level to reject 
the null hypothesis and to accept the alternative hypothesis that the population mean for Pb < HIL-A. 

Reference 
US Environmental Protection Agency (USEPA) 2006, Data Quality Assessment: Statistical Methods for 
Practitioners (QA/G-9S), EPA/240/B-06/003, USEPA, Washington DC. 
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Table 4 Critical values of the Student’s t-distribution 

Degrees 
of 
freedom 

Significance level for 
one-sided interval (α), 
e.g. confidence limits 

15% 10% 5% 2.5% 1% 0.5% 

 Confidence level for 
one-sided interval 
(t 1 - α), e.g. confidence 
limits 

85% 90% 95% 97.5% 99% 99.5% 

 Significance level for 
two-sided interval (α/2), 
e.g. confidence 
intervals 

30% 20% 10% 5% 2% 1% 

 Confidence level for 
two-sided interval 
(t1 - α/2), e.g. confidence 
intervals 

70% 80% 90% 95% 98% 99% 

1  1.963 3.078 6.314 12.706 31.821 63.657 

2  1.386 1.886 2.920 4.303 6.965 9.925 

3  1.250 1.638 2.353 3.182 4.541 5.841 

4  1.190 1.533 2.132 2.776 3.747 4.604 

5  1.156 1.476 2.015 2.571 3.365 4.032 

6  1.134 1.440 1.943 2.447 3.143 3.707 

7  1.119 1.415 1.895 2.365 2.998 3.499 

8  1.108 1.397 1.860 2.306 2.896 3.355 

9  1.100 1.383 1.833 2.262 2.821 3.250 

10  1.093 1.372 1.812 2.228 2.764 3.169 

11  1.088 1.363 1.796 2.201 2.718 3.106 

12  1.083 1.356 1.782 2.179 2.681 3.055 

13  1.079 1.350 1.771 2.160 2.650 3.012 

14  1.076 1.345 1.761 2.145 2.624 2.977 

15  1.074 1.341 1.753 2.131 2.602 2.947 

16  1.071 1.337 1.746 2.120 2.583 2.921 

17  1.069 1.333 1.740 2.110 2.567 2.898 

18  1.067 1.330 1.734 2.101 2.552 2.878 

19  1.066 1.328 1.729 2.093 2.539 2.861 

20  1.064 1.325 1.725 2.086 2.528 2.845 

21  1.063 1.323 1.721 2.080 2.518 2.831 

22  1.061 1.321 1.717 2.074 2.508 2.819 

23  1.060 1.319 1.714 2.069 2.500 2.807 

24  1.059 1.318 1.711 2.064 2.492 2.797 

25  1.058 1.316 1.708 2.060 2.485 2.787 

26  1.058 1.315 1.706 2.056 2.479 2.779 

27  1.057 1.314 1.703 2.052 2.473 2.771 

28  1.056 1.313 1.701 2.048 2.467 2.763 

29  1.055 1.311 1.699 2.045 2.462 2.756 
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Degrees 
of 
freedom 

Significance level for 
one-sided interval (α), 
e.g. confidence limits 

15% 10% 5% 2.5% 1% 0.5% 

 Confidence level for 
one-sided interval 
(t 1 - α), e.g. confidence 
limits 

85% 90% 95% 97.5% 99% 99.5% 

 Significance level for 
two-sided interval (α/2), 
e.g. confidence 
intervals 

30% 20% 10% 5% 2% 1% 

 Confidence level for 
two-sided interval 
(t1 - α/2), e.g. confidence 
intervals 

70% 80% 90% 95% 98% 99% 

30  1.055 1.310 1.697 2.042 2.457 2.750 

40  1.050 1.303 1.684 2.021 2.423 2.704 

60  1.046 1.296 1.671 2.000 2.390 2.660 

120  1.041 1.289 1.658 1.980 2.358 2.617 

∞  1.036 1.282 1.645 1.960 2.326 2.576 

Modified from USEPA 2006, G-9S. 
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Appendix G: Two-sample t-test 
hypothesis testing 
A decision may require two independent populations to be compared – for example, a potentially 
contaminated area and a background area, or concentration levels from up-gradient monitoring wells 
and downgradient monitoring wells. In such cases a two-sample t-test can be used.  
This is a parametric method, so the assumption of normality should be checked; see USEPA (2006,  
G-9S) for non-parametric methods, if those are required. Two-sample t-tests can also be used for paired 
populations, such as concentrations before and after remediation; again, see USEPA (2006, G-9S) for 
parametric and non-parametric methods for paired data. 
The method used for conducting a two-sample t-test varies depending on whether the variances (s2) of 
the two samples are equal or unequal. For environmental data, the variances are generally unequal, and 
this method is used in the following determination. 

Determination 
Establish the null hypothesis (H0) and alternative hypothesis (HA). As the objective is to compare two 
populations, the null hypothesis is set to be that the two populations are equal: 
 

H0: µ1 – µ2 = δ0 
 

The alternative hypothesis for a one-sided test is then: 
 

HA: µ1 – µ2 > δ0 
To calculate the test statistics (t0) for unequal variance, it is first necessary to determine the degrees of 
freedom (df) using the Welch–Satterthwaite equation: 
 

df  =  
�s1

2

n1
+ s2

2

n2
�

2

�s1
2�

2

n1
2(n1-1)

+
�s2

2�
2

n2
2(n2-1)

 

 

 
The test statistic, t0, is then calculated using the Welch’s t-test formula, which a modification of the 
Student’s t-test formula: 
 

t0= 
(x�1- x�2) - δ0

�s1
2

n1
 + s2

2

n2
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Where: 
µ1 population 1 
µ2 population 2 
df degrees of freedom 

s1
2 sample variance from population 1 

s2
2 sample variance from population 2 

n1 number of samples from population 1 
n2 number of samples from population 2 
t0 test statistic 

tα critical value 

1 sample mean from population 1 

2 sample mean from population 2 
δ0 difference (delta) of zero 

Critical value 
The critical value (tα) is determined from a table of critical values of Student’s t-distribution (see Table 4) 
or using an appropriate software program. The confidence level (1 – α) and the degrees of freedom are 
used to select tα. 
The test statistic is then compared to the critical value, and the following decisions made: 

• if t0 < tα, then fail to reject the null hypothesis that the difference between the population means is 
zero 

• if t0 > tα, then reject the null hypothesis that the difference between the population means is zero and 
accept the alternative hypothesis that the mean of population 1 is greater than the mean of 
population 2. 

While the signs of t0 and tα are important in regard to whether an upper-tailed or lower-tailed test is 
being conducted, when comparing t0 to tα it is the absolute values that are compared. 

p-value 
The probability or p-value is also determined, either approximately from a table of critical values of 
Student’s t-distribution (see Table 4) or using an appropriate software program. The p-value is then 
compared to the selected value of alpha (α) and the following decisions made: 

• if p-value > α, then fail to reject the null hypothesis that the difference between the population means 
is zero 

• if p-value < α, then reject the null hypothesis that the difference between the population means is 
zero and accept the alternative hypothesis that the mean of population 1 is greater than the mean of 
population 2. 

While the sign of the p-value is important in regard to whether an upper-tailed or lower-tailed test is being 
conducted, when comparing the p-value to α it is the absolute values that are compared. 

As critical values and p-values are mathematically related, either approach will always provide the same 
conclusion. 

Worked example 
In this example we use the arsenic (As) data from Table 1 to determine whether the contamination is 
limited only to the surficial soils (population 1), and therefore if the deeper soils (population 2) can be 
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considered separately. The descriptive statistics for the two datasets, and the original combined dataset 
for comparison, are shown in Table 5.  
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Table 5 Arsenic summary statistics by population (mg/kg) – simulated data from Table 1 

Statistic Surface population 1 Depth population 2 Combined 

Maximum 341 54 341 

Mean 109.3 23.4 66.3 

Medium 66.5 13.5 38.5 

Minimum 24 6 6 

Variance 12,093.4 390.3 7,792.2 

Standard deviation 110.0 19.8 88.3 

 

The test is to be conducted at a confidence level of 95%, i.e. α = 0.05. 
 
The null hypothesis is: 

H0: µ1 – µ2 = δ0 
 
The alternative hypothesis for a one-sided test is then: 
 

HA: µ1 – µ2 > δ0 
 
The degrees of freedom is first calculated using the Welch–Satterthwaite equation: 

 

df = 
�s1

2

n1
 + s2

2

n2
�

2

�s1
2�

2

n1
2(n1 −  1)

 + 
�s2

2�
2

n2
2(n2 −  1)

 

 

 
 

df = 
�12,093.4

8  + 390.3
8 �

2

(12,093.4)2

82(8 −  1)
 + (390.3)2

82(8 −  1)
 
 

 
 

df =  
1,560.5 2

3.3 x 105 + 340 
 

 
 

df =  7.45 

 
Rounded down to the next integer, the degrees of freedom is seven (7). A conservative approach is to 
estimate the degrees of freedom by using the smaller of n1 – 1 or n2 – 1: in this case, that number is also 
seven. 
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The test statistic, t0, is then calculated using Welch’s t-test formula: 
 

t0= 
(x�1- x�2) - δ0

�s1
2

n1
 + s2

2

n2
 

 

 
 

t0 = 
(109.3 −  23.4)  −  0

��12,093.4
8 �  + 390.3

8

 

 
 

t0 = 2.174 

Critical value 
From a table of critical values of Student’s t-distribution (see Table 4), at a confidence level of 95% for 
seven degrees of freedom, tα = 1.895. 

As 2.174 > 1.895, i.e. t0 > tα, then the null hypothesis that the population means are equal is rejected, 
and the alternative hypothesis HA (that the mean of population 1 is greater than the mean of 
population 2) is accepted, i.e. µ1 – µ2 > δ0. 

p-value 
From a table of critical values of Student’s t-distribution, the p-value is between 0.025 and 0.05, i.e. tα is 
between 2.365 and 1.895. Using a software package, the p-value is calculated to be 0.033. 
As 0.033 < 0.05, i.e. the p-value < α, then the null hypothesis H0 (that the population means are equal) is 
rejected, and the alternative hypothesis HA (that the mean of population 1 is greater than the mean of 
population 2) is accepted, i.e. µ1 – µ2 > δ0. 

Critical region 
As t0 falls within the critical region, it is likely that the observed test statistic is more extreme than would 
be expected if the null hypothesis were true. And, as the p-value < α, the probability of observing a p-
value as extreme as 0.033 would be low, if H0 were true. Both the critical-value approach and the p-value 
approach give sufficient evidence at a 95% confidence level to reject the null hypothesis and to accept 
the alternative hypothesis that the mean of population 1 is greater than the mean of population 2. 
Based on review of the summary data, relative to a HIL-A of 100 mg/kg, and the results of the two-
sample t-test, it appears that significant impacts relate to the surficial soils rather than the deeper soils. 
Accordingly, for the design of further investigations and consideration of remedial options, the surficial 
soils and deeper soils should be considered as separate decision areas. The actual depths which these 
two populations encompass will need to be determined by further investigations. 

Reference 
US Environmental Protection Agency (USEPA) 2006, Data Quality Assessment: Statistical Methods for 
Practitioners (QA/G-9S), EPA/240/B-06/003, USEPA, Washington DC. 
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Appendix H: Decision errors 
Statistical hypothesis testing using a null hypothesis significance testing (NHST) framework – the testing 
of the null hypothesis (H0) against an alternative hypothesis (HA) – can lead to the following four 
outcomes: 

• accepting H0 when H0 is true – this is a correct decision for the confidence level of the test (1 – α), 
e.g. α = 0.05 and confidence level = 95% 

• rejecting H0 when H0 is true – this is a Type I or α decision error and results in the false rejection of 
H0 

• accepting H0 when H0 is false – this is a Type II or β decision error and results in the false 
acceptance of H0 

• rejecting H0 when H0 is false – this is a correct decision. The power of the test is (1 – β), e.g. β = 0.20 
and power = 80%. 

These outcomes are summarised in Table 6. 

Table 6 Decision errors in hypothesis testing 

Decision made Actual condition –  
H0 is true 

Actual condition –  
H0 is false (HA is true) 

Accept H0 (fail to reject H0) Correct decision 
1 – α = confidence level 

Decision error (Type II error) 
False acceptance 

Reject H0 (accept HA) Decision error (Type 1 error) 
False rejection 

Correct decision 
1 – β = power of test 

 
In the context of the assessment of site contamination, the null hypothesis is that the site or decision 
area is contaminated. Decision errors are therefore generally defined as follows: 

• the site or decision area is considered not to be contaminated when it actually is – a Type I error. 
Type I errors can lead to unacceptable risks to human health and/or the environment, and the 
regulatory framework is established to preferentially protect against Type I errors 

• the site or decision area is considered to be contaminated when it actually is not – a Type II error. 
Type II errors can lead to sites or decision areas being remediated unnecessarily, or land being used 
for a less-sensitive land use, or unwarranted restrictions on the surrounding environment (such as 
water-use restrictions or fishing bans). 
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Appendix I: 95% confidence intervals 
Confidence intervals can be used as an indicator of uncertainty around a point estimate, in this case the 
mean. By choosing a method for expressing uncertainty, a performance metric that quantifies uncertainty 
can be specified, allowing limits to be established against which the quantity and quantity of the data can 
be compared (USEPA 2006, G-4). 
A method for determining the 95% confidence interval (CI) of the mean for a nearly-normal distribution is 
shown, using the Student’s t formula. For mildly skewed datasets, the Student’s t-statistic should be 
used, but for moderate to highly skewed datasets, the confidence interval based on the t-statistic can fail 
to cover the population mean, especially for small sample sizes (USEPA 2006, G-9S). It is therefore 
important to test the data for normality. This is most easily done by constructing normal Q–Q plots, using 
appropriate statistical software packages. For other distributions or non-parametric methods, refer to 
USEPA (2006, G-9S). 

Determination 
The test statistic is calculated using the one-sided Student’s t-UCL formula: 

s
95% confidence interval = [0, x� + tα/2, n − 1 ] 

√n 
 
Where: 

 sample mean 

tα/n – 1 critical value 
s sample standard deviation 
n number of samples 

s/√n standard error of the mean (SE). 
 
The standard error of the mean (SE) describes the variability in the sampling distribution (i.e. the 
distribution of means from multiple sampling events of the same population), not the variability in the 
underlying population. One of the key features of the SE is that it decreases as the sample size 
increases (Devore and Farnum, 2005). 
The SE multiplied by the critical value gives the margin of error (MoE), which can be defined as the 
radius, or half the width, of a confidence interval for a particular statistic at a specified confidence level 
(in the equation above, at a 95% confidence level). The MoE also decreases as the number of samples 
increases. 
The critical value is determined from a table of critical values of Student’s t-distribution (Table 4 in 
Appendix F) or using an appropriate statistical software package. The confidence level (1 – α) and the 
degrees of freedom (n – 1) are used to select tα/2,n – 1 for a two-sided interval. 

Worked example 
In this example we use the metals data from Table 1 to determine the 95% confidence interval for 
chromium (Cr) for surface fill (n = 8) and all fill (n = 16), at a confidence level of 95% (α = 0.05). 
The 95% confidence interval is calculated using the Student’s t-UCL formula: 

̅
s

95% confidence interval = [0, x + tα, n − 1 ] 
√n 
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Surface fill 
The critical value is selected for a two-sided interval from a table of critical values of Student’s t-
distribution (Table 4 in Appendix F). At seven (7) degrees of freedom the critical value is 2.365. 
For surface fill,  = 15.3, s = 6.5 and n = 8: 

 
6.5

95% confidence interval  = 15.3 ± 2.365 *  
√8

 

95% confidence interval = 15.3 ±  5.4 
 

95% confidence interval =  9.8 to 20.7 mg/kg 
 

All fill 
The critical value is selected for a two-sided interval from a table of critical values of Student’s t-
distribution (Table 4 in Appendix F). At 15 degrees of freedom the critical value is 2.131. 

For surface fill,  = 13.2, s = 6.5 and n = 16: 
 

95% confidence interval  = 15.3 ± 2.131 * 
6.5
√16

 

 
95% confidence interval =  15.3 ±  3.5 

 
95% confidence interval =  9.7 to 16.7 mg/kg 

 
Based on similar datasets, the greater number of samples used in the analysis for all fill samples (16) 
results in a smaller MoE, and therefore a narrower confidence interval, than does the smaller number of 
samples used in analysing the surficial fill (8 samples). Figure 12 illustrates this for both Cr and nickel 
(Ni); Table 7 and Table 8 show the associated summary statistics. 
The maximum probable error (MPE), which is a relative measure based on the MoE divided by the mean 
(MPE = MoE/), can be used to specify the required statistical precision for data collection. For example, 
for Ni, Table 7 and Table 8 show that the MPE for eight (8) samples is 52.6%, while 16 samples are 
required to achieve an MPE of 33.0%. 
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Figure 12 Summary statistics for Cr and Ni data with variable n (mg/kg) – minimum, 95% LCL, mean, 95% UCL, maximum 

Source: Marc Salmon, Easterly Point Environmental Pty Ltd 

Table 7 Summary statistics for Cr and Ni data (mg/kg) – surface locations 

Surface data Chromium Nickel 

Number of samples 8 8 

Sample mean 15.3 8.6 

Standard deviation 6.5 5.4 

Standard error of the mean (SE) 2.3 1.9 

Relative standard deviation (RSD) 42.6% 62.9% 

Margin of error (MoE) 5.4 4.5 

Maximum probable error (MPE) 35.6% 52.6% 

Table 8 Summary statistics for Cr and Ni data (mg/kg) – all locations 

All data Chromium Nickel 

Number of samples 16 16 

Sample mean 13.2 10.2 

Standard deviation 6.5 6.3 

Standard error of the mean (SE) 1.6 1.6 

Relative standard deviation (RSD) 49.4% 61.9% 

Margin of error (MoE) 3.5 3.4 

Maximum probable error (MPE) 26.3% 33.0% 

 



 

66 
 

References 
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Appendix J: 95% UCL for normal 
distributions 
Here we show a method for determining the 95% upper confidence limit of the mean (UCLx̅) for a nearly-
normal distribution, using the Student’s t formula. 
For mildly skewed datasets, the Student’s t-statistic should be used, but for moderate to highly skewed 
datasets, the 95% UCLx̅ based on the t-statistic may not cover the population mean, especially for small 
sample sizes. It is therefore important to test the data for normality. This is most easily done by 
constructing normal Q–Q plots, using appropriate statistical software packages. 

Determination 
The test statistic is calculated using the one-sided Student’s t-UCL formula: 
 

95% UCLx̅ =  x̅ +  tα,n−1  
s
√n

 

 
Where: 

95% UCLx̅  test statistic 

x̅   sample mean 

tα,n-1 critical value 
s sample standard deviation 
n number of samples 
The critical value is determined from a table of critical values of Student’s t-distribution (Table 4 in 
Appendix F), or using an appropriate statistical software package. The confidence level (1 – α) and the 
degrees of freedom (n – 1) are used to select tα,n-1. 

Worked example 
Here we use the metals data from Table 1 to determine the 95% UCL for arsenic (As) and chromium 
(Cr) at a confidence level of 95% (α = 0.05), at 15 degrees of freedom (16 – 1 = 15). 
 
The 95% UCL is calculated using the Student’s t-UCL formula: 
 

95% UCLx̅ =  x̅ +  tα,n−1  
s
√n

 

 
The critical value is selected from a table of critical values of Student’s t-distribution (Table 4 in 
Appendix F). In this instance it is 1.753. 
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Arsenic 
For As, x̅ = 66.3, s = 88.3 and n = 16: 
 

95% UCLx̅ =  66.3 +  1.753 
88.3
√16

 

 

95% UCLx̅ =  66.3 + 38.7 
 

95% UCLx̅ = 105.0 
 

Chromium 
For Cr, x̅ = 13.2, s = 6.5 and n = 16: 
 

95% UCLx̅ = 13.2 +  1.753 
6.5
√16

 

 

95% UCLx̅ = 13.2 +  2.85 
 

95% UCLx̅ = 16.05 
 
The coefficient of variation (CV) for As is 1.3, suggesting a distribution that is not nearly-normal: this is 
confirmed by the Q–Q plot for As (Figure 6 in Appendix E). Figure 1, Figure 2 and Figure 5 show that the 
dataset is skewed to the right, indicating that it can’t be appropriately analysed with a Student’s t-
distribution. Running the data through a statistical software package gives the same conclusion: the 
software recommends the use of a gamma distribution and calculates a 95% UCL of 120.5 mg/kg. 
The CV for Cr is 0.5, suggesting a distribution that is nearly-normal: this is confirmed by the distribution 
shown in Figure 1 and Figure 2 and the Q–Q plot for Cr in Figure 7. Cr appears to be normally and 
symmetrically distributed, and therefore the calculated value is likely to be an accurate estimate of the 
95% UCL. A statistical software package confirmed this: it recommended use of a Student’s 
t-distribution and calculated a 95% UCL for the mean of 16.04 mg/kg. 
Based on use of the Student’s t-UCL formula to calculate these 95% UCL, there is a 95% probability 
that the mean concentration of Cr will not exceed 16.05 mg/kg. The As dataset needs to be analysed 
further by another method. 

References 
US Environmental Protection Agency (USEPA) 2002, Calculating Upper Confidence Limits for Exposure 
Point Concentrations at Hazardous Waste Sites, OSWER 9285.6-10, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2006, Data Quality Assessment: Statistical Methods for 
Practitioners (QA/G-9S), EPA/240/B-06/003, USEPA, Washington DC. 
US Environmental Protection Agency (USEPA) 2015, ProUCL Version 5.1.002: Technical Guide: 
Statistical Software for Environmental Applications for Data Sets with and without Nondetect 
Observations, EPA/600/R-07/041, USEPA, Washington DC. 
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Appendix K: 95% UCL for log-normal 
distributions 
Here we show a method for determining the 95% upper confidence limit of the mean (UCLx̅) for a log-
normal distribution, using the Land’s H-statistic.  
This method assumes log-normality, and it is very important to test this assumption. The easiest way to 
do this is to construct log-normal Q–Q plots using an appropriate statistical software package. 

Determination 
The test statistic is calculated using the one-sided Land’s H-statistic: 

s2 s H
95% H-UCLx̅  =  exp�y� + y + y 1-α� 2 √n-1

 
Where: 

95% H-UCLx̅ test statistic 
exp exponential function, i.e. 2.7183 to the power of the value inside the brackets 

x̅   mean of the log-transformed sample measurements 
sy

2 variance of the log-transformed sample measurements 
sy standard deviation of the log-transformed sample measurements 

H1-α H-statistic critical value, at the stated confidence level (1 – α), which depends on the 
values of sy and n 

n number of samples 
 
The sample data is transformed using the natural logarithm, i.e. a logarithm to the base e (2.7183), such 
that yi = ln xi, and the descriptive statistics , sy

2 and sy are determined from the transformed data. 

The value of H1- α is selected from Table 9 for a 95% confidence level, based on the values for sy and n. 
For other confidence levels, refer to USEPA (2006, G-9S), and for values of sy and n not listed in 
Table 9, use interpolation.  

Worked example 
Here we use the metals data from Table 1 to determine the 95% H-UCLx̅ for arsenic (As) and copper 
(Cu) at a confidence level of 95% (α = 0.05). 

Arsenic 
The sample data is transformed using the natural logarithm, and for As,  = 3.561, sy

2 = 1.347, 
sy = 1.160 and n = 16. 
 
The value of H is selected from Table 9. Based on sy and n, H is between 2.564 and 3.163. 
By interpolation, H = 2.958.  
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The test statistic is calculated from: 

̅
s2 s H

95% H-UCLx =  exp�y� + y + y 1-α� 2 √n-1
 

95% H-UCLx̅  = exp�3.561 + 
1.347

2  + 
1.160 * 2.958 

√16-1
� 

 

95% H-UCLx̅ =  exp(5.120) 
 

95% H-UCLx̅ = 167.4 
 
The coefficient of variation (CV) for As is 1.3, suggesting a distribution that is not nearly-normal: this is 
confirmed by the Q–Q plot for As (Figure 6 in Appendix E). Figure 1, Figure 2 and Figure 5 show that the 
dataset is skewed to the right. While this suggests that an H-UCLx̅ may be appropriate, when a statistical 
software package was used to generate a range of distributions for calculating the 95% UCLx̅, it 
recommended a gamma distribution. 
Although the As data appear log-normal, the Land’s H-statistic is sensitive to deviations from log-
normality, and produces very high values for large variance or skewness, or where n is small (< 30) 
(USEPA 2002). Accordingly, USEPA (2015) recommends that positively skewed datasets should first be 
tested for a gamma distribution. If the dataset follows a gamma distribution, the UCLx̅ should then be 
computed using a gamma distribution. 

Assuming a gamma distribution for the As data, the software package determined a 95% UCLx̅ of 
120.5 mg/kg – markedly different from the 95% H-UCLx̅ of 167.4 mg/kg. As both exceed the HIL-A for As 
of 100 mg/kg, further data analysis or investigations would be recommended. 

Copper 
The sample data is transformed using the natural logarithm, and for Cu,  = 3.773, sy

2 = 0.950, 
sy = 0.974 and n = 16. 
 
The value of H is selected from Table 9. Based on sy and n, H is between 2.432 and 2.744. By 
interpolation, H = 2.619. 
 
The test statistic is calculated from: 
 

95% H-UCLx̅ =  exp�y� + 
sy

2

2 + 
syH1-α

√n-1
� 

 

95% H-UCLx̅  = exp�3.773 + 
0.950

2  + 
0.974 * 2.619 

√16-1
� 

 

95% H-UCLx̅ = exp(4.907) 
 

95% H-UCLx̅ = 135.2 
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The CV for Cu is 1.4, suggesting a distribution that is not nearly-normal. This is confirmed by the Q–Q 
plot for Cu in Figure 8. Figure 1 and Figure 5 show that the dataset is skewed to the right, suggesting 
that an H-UCL may be appropriate. This was confirmed by using a statistical software package to 
generate a range of distributions for calculating the 95% UCL. In both cases the 95% UCL was 
135.2 mg/kg. 

Table 9 Values of H for one-sided 95% confidence level for computing H-UCL on a log-normal mean 

Sy n = 3 n = 5 n = 7 n = 10 n = 12 n = 15 n = 21 n = 31 n = 51 n = 101 

0.10 2.750 2.035 1.886 1.802 1.775 1.749 1.722 1.701 1.684 1.670 

0.20 3.295 2.198 1.992 1.881 1.843 1.809 1.771 1.742 1.718 1.697 

0.30 4.109 2.402 2.125 1.977 1.927 1.882 1.833 1.793 1.761 1.733 

0.40 5.220 2.651 2.282 2.089 2.026 1.968 1.905 1.856 1.813 1.777 

0.50 6.495 2.947 2.465 2.220 2.141 2.068 1.989 1.928 1.876 1.830 

0.60 7.807 3.287 2.673 2.368 2.271 2.181 2.085 2.010 1.946 1.891 

0.70 9.120 3.662 2.904 2.532 2.414 2.306 2.191 2.102 2.025 1.960 

0.80 10.43 4.062 3.155 2.710 2.570 2.443 2.307 2.202 2.112 2.035 

0.90 11.74 4.478 3.420 2.902 2.738 2.589 2.432 2.310 2.206 2.117 

1.00 13.05 4.905 3.698 3.103 2.915 2.744 2.564 2.423 2.306 2.205 

1.25 16.33 6.001 4.426 3.639 3.389 3.163 2.923 2.737 2.580 2.447 

1.50 19.60 7.120 5.184 4.207 3.896 3.612 3.311 3.077 2.881 2.713 

1.75 22.87 8.250 5.960 4.795 4.422 4.081 3.719 3.437 3.200 2.997 

2.00 26.14 9.387 6.747 5.396 4.962 4.564 4.141 3.812 3.533 3.295 

2.50 32.69 11.67 8.339 6.621 6.067 5.557 5.013 4.588 4.228 3.920 

3.00 39.23 13.97 9.945 7.864 7.191 6.570 5.907 5.388 4.947 4.569 

3.50 45.77 16.27 11.56 9.118 8.326 7.596 6.815 6.201 5.681 5.233 

4.00 52.31 18.58 13.18 10.38 9.469 8.630 7.731 7.024 6.424 5.908 

4.50 58.85 20.88 14.80 11.64 10.62 9.669 8.652 7.854 7.174 6.590 

5.00 65.39 23.19 16.43 12.91 11.77 10.71 9.579 8.688 7.929 7.277 

6.00 78.47 27.81 19.68 15.45 14.08 12.81 11.44 10.36 9.449 8.661 

7.00 91.55 32.43 22.94 18.00 16.39 14.90 13.31 12.05 10.98 10.05 

8.00 104.6 37.06 26.20 20.55 18.71 17.01 15.18 13.74 12.51 11.45 

9.00 117.7 41.68 29.46 23.10 21.03 19.11 17.05 15.43 14.05 12.85 

10.00 130.8 46.31 32.73 25.66 23.35 21.22 18.93 17.13 15.59 14.26 

From Gilbert (1987) 
For values of sy and n not listed, use interpolation.  
For other confidence levels, refer to USEPA (2006, G-9S). 
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Appendix L: 95% UCL for skewed 
distributions 
Here we give a method for determining the 95% upper confidence limit of the mean (UCL) when the 
distribution cannot be identified. It is based on the non-parametric Chebyshev inequality formula. 
The Chebyshev inequality formula makes no assumptions about distribution. For moderately skewed 
datasets it yields conservative but realistic values for UCL. But for highly skewed datasets it can 
substantially underestimate the UCL, especially for small sample sizes, because it assumes that the 
standard deviation of the underlying distribution is known. In such cases you can use higher confidence 
limits (USEPA 2015): statistical software packages will usually recommend these. 

Determination 
For unknown distributions, the test statistic is calculated using the one-sided Chebyshev inequality 
formula: 

̅
s

95% UCLx̅ =  x +  k(1−α)   
√n

 
Where: 

95% UCLx̅  test statistic 

x̅   sample mean 

k(1-α) critical value 

s sample standard deviation 
n number of samples 
 
The critical value, k, which is based on the one-sided Chebyshev inequality, is selected from Table 10. It 
is determined as: 

1
k =  � − 1 α

Table 10 Critical values based on the Chebyshev Theorem 

Confidence level % alpha (α) k 

99 0.01 9.95 

95 0.05 4.36 

90 0.10 3.00 

85 0.15 2.38 

80 0.20 2.00 

75 0.25 1.73 

Adapted from CL:AIRE (2008). 
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Worked example 
Here we use the metals data from Table 1 to determine the 95% UCL of the mean for arsenic (As) and 
zinc (Zn), at a confidence level of 95% (α = 0.05). 
 
The test statistic is calculated using the Chebyshev inequality formula: 

s
95% UCLx̅= x̅+ k(1-α)  

√n
 

The critical value is selected from Table 10. For α = 0.05, k(1-α) = 4.36. 

Arsenic 
For As,  = 66.3, s = 88.3 and n = 16: 

 

95% UCLx̅ =  66.3 +  4.36 
88.3
√16

 

 

95% UCLx̅ =  66.3 + 96.2 
 

95% UCLx̅ = 162.5 

Zinc 
For Zn, with x̅ = 62.9, s = 139.3 and n = 16: 

139.3
95% UCLx̅  =  62.9+ 4.36  

√16
 

95% UCLx̅ =  62.9 +  151.9 
 

95% UCLx̅ = 214.7 
 
Table 1 shows that the coefficient of variation (CV) for As is 1.3, suggesting a distribution that is not 
nearly-normal. This is confirmed by the Q–Q plot for As in Figure 6. Figure 1 and Figure 2, and the 
histogram in Figure 5, show that the dataset is skewed to the right, implying that a Student’s t-distribution 
is not appropriate for this dataset. A statistical software package confirmed this, and also determined that 
the Chebyshev inequality method produced an overly conservative UCLx̅ for this dataset. The package 
recommended the use of a gamma distribution; this led to a calculated value for the 95% UCLx̅ of 
120.5 mg/kg. 
The dataset for Zn has a CV of 2.2 and is highly skewed to the right, as can be seen from Figure 1 
and Figure 2, the Q–Q plot for Zn in Figure 11, and the histogram in Figure 5. The skewness suggests 
that a Student’s t-distribution is not appropriate for this dataset. A statistical software package confirmed 
this, also finding that the dataset does not follow a discernible distribution. The package therefore 
recommended the use of the Chebyshev inequality method, which calculated a 95% UCLx̅ of 
214.7 mg/kg. 
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