Intended for Department of Regional NSW

Document type
Report

Date 14 November 2022

Project number **318001193-T4a**

CAPTAINS FLAT AIR QUALITY MONITORING REPORT JUNE 2021 TO SEPTEMBER 2022

CAPTAINS FLAT AIR QUALITY MONITORING REPORT JUNE 2021 TO SEPTEMBER 2022

Project name	Captains Flat Air Quality Monitoring Program	Ramboll
Project no.	318001193	Level 2, Suite 18 Eastpoint
Recipient	Paul McBain	50 Glebe Road
Document type	Report	PO Box 435
Version	1	The Junction
Date	14/11/2022	NSW 2291
Prepared by	Nathalie Tomson	Australia
Checked by	Greer Laing	T +61 2 4962 5444
Approved by	Greer Laing	https://ramboll.com
Description	Data collected from 22 June 2021 to 15 September 2022 for the air quality monitoring program at Captains Flat, NSW	

CONTENTS

1.	Executive Summary	3
2.	Introduction	4
2.1	Overview	4
2.2	Program background	4
2.3	Pollutants of concern	4
3.	Study Area	6
4.	Methodology	8
4.1	Sampling design	8
4.2	Monitoring equipment and siting	8
4.3	Measurement of metals in TSP	9
4.4	Assessment criteria	9
4.5	Meteorology monitoring and terrain influences	9
4.6	Data presentation and analysis	10
4.6.1	Meteorological conditions	10
4.6.2	TSP and metal concentrations measured	10
4.6.3	Potential factors influencing dispersion	11
4.6.4	Correlations for potential source identification	11
4.7	Technical limitations	11
5.	Results	12
5.1	Overview	12
5.2	Meteorology conditions	12
5.3	TSP and heavy metal concentrations measured	16
5.3.1	Investigation days	27
5.4	Potential factors influencing dispersion	29
5.5	Correlations for potential source identification	36
6.	Discussion	41
7.	Limitations	42
8.	References	43

GLOSSARY

Acronym / Symbol	Description
As	Arsenic
AS/NZS	Australian/New Zealand Standard
Ва	Barium
ВоМ	Bureau of Meteorology
Cd	Cadmium
Co	Cobalt
Cr	Chromium
Cu	Copper
DPIE	Department of Planning, Industry and Environment (NSW)
Fe	Iron
Hg	Mercury
HVAS	High-volume air sampler
IPC-MS	Inductively coupled plasma spectrometric method
Pb	Lead
LOR	Limit of Reporting
Mn	Manganese
Мо	Molybdenum
ΝΑΤΑ	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NERDDC	National Health and Medical Research Council
Ni	Nickel
PM _{2.5}	Particulate matter with an aerodynamic diameter of less than 2.5 microns
PM10	Particulate matter with an aerodynamic diameter of less than 10 microns
Regional NSW	NSW Department of Regional NSW
RFS	Rural Fire Service
SAQP	Sampling and Analysis Quality Plan
SCS	Soil Conservation Services
Se	Selenium
Ti	Titanium
TSP	Total suspended particulates, particulate matter with an aerodynamic diameter of less than 50 to 100 microns (measured at less than 50 microns for this report)
Zn	Zinc
µg/m³ or µg m-³	Micrograms per cubic metre

1. EXECUTIVE SUMMARY

An air quality monitoring program was commissioned in Captains Flat, NSW to inform air quality risks associated with heavy metals in airborne particulate matter from the legacy Lake George Mine. Sampling at five locations commenced on 22 June 2021 and is on-going. This report summarises all data from 22 June 2021 to 15 September 2022. Sampling is configured to measure a 24-hour average sample every one day in six at five sensitive receptors around the town.

The current annual average total suspended particulate (TSP) concentration remains below the annual average criteria of 90 μ g/m³, currently averaging 18.7 μ g/m³. Three TSP samples were above this value: AQM2 on 17 February 2022 (117.4 μ g/m³), AQM1 on 10 August 2022 (97.2 μ g/m³), and AQM4 on 28 August 2022 (109.1 μ g/m³). All 24-hour lead concentrations were below the annual average lead air quality criteria of 0.5 μ g/m³, averaging 0.004 μ g/m³ during the monitoring period. Zinc average concentration during the monitoring period is 51.9 μ g/m³.

The monitoring shows spatial and temporal variations in concentrations of arsenic, barium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, titanium and zinc around Captains Flat. Most cadmium and selenium concentrations were measured below the limit of reporting (LOR), and mercury was detected in one sample since monitoring commenced.

Bivariate polar plots were generated with the concentration data and average wind conditions measured at 10 m height by a meteorological station in one of the sampling locations. This analysis provides some indications of potential source direction, but current data is limited by wind directions on sampling days.

The data shows strong correlations when comparing heavy metals, particularly between copper, manganese, cobalt, molybdenum, nickel, chromium and iron.

The monitoring program is on-going, currently commissioned until 31 August 2024 with potential to extend for one additional year. Ambient air quality criteria for lead and TSP are based on annual averages, and air quality is influenced by seasonal variations with potential for distinct annual patterns. Data from subsequent monitoring months will be added to future reports.

2. INTRODUCTION

2.1 Overview

Ramboll Australia Pty Ltd (Ramboll) has been contracted by Department of Regional NSW to implement and maintain an air quality monitoring program to inform air quality risks associated with the legacy Lake George Mine, in Captains Flat, NSW. The Legacy Mines Program is completing a Lead Management Plan for Captains Flat in conjunction with a multi-agency government taskforce (i.e., Department of Regional NSW, NSW EPA, Transport for NSW, Crown Lands, Department of Education, Department of Health, Department of Primary Industries and Queanbeyan-Palerang Regional Council) with the aim to reduce community exposure to lead resulting from historic mining in the town (Regional NSW, 2021).

The air quality monitoring program managed by Ramboll is supporting the Captains Flat Lead Management Plan under the taskforce to ensure contamination of public land is managed to the mutual agreement of all stakeholders. The program involves environmental sampling of multiple media on public properties to assess current risk and provision of guidance regarding lead risk abatement measures. Work commenced early 2021 and is on-going, with additional data collected, analysed and reported on a 2-monthly basis. This report presents the data collected from 22 June 2021 to 15 September 2022.

2.2 Program background

The air quality monitoring program was commissioned on 21 June 2021, with the first sample collected 22 June 2021. From 27 October 2021 routine servicing of the air quality monitoring program was handed over to Soil Conservation Services (SCS), with Ramboll providing calibration and reporting services.

Previous reports delivered by Ramboll are listed below:

- 318001193-T4a Captains Flat Air Quality Monitoring Report 2021-08, summarising data collected from 22 June 2021 to 20 August 2021.
- 318001193-T4a Captains Flat Air Quality Monitoring Report 2021-10, summarising data collected from 22 June 2021 to 02 October 2021.
- 318001193-T4a Captains Flat Air Quality Monitoring Report 2021-12, summarising data collected from 22 June 2021 to 07 December 2021.
- 318001193-T4a Captains Flat Air Quality Monitoring Report 2022-02, summarising data collected from 22 June 2021 to 30 January 2022.
- 318001193-T4a Captains Flat Air Quality Monitoring Report 2022-04, summarising data collected from 22 June 2021 to 31 March 2022.
- 318001193-T4a Captains Flat Air Quality Monitoring Report 2022-06, summarising data collected from 22 June 2021 to 30 May 2022.

2.3 Pollutants of concern

The mine operated from 1892 to 1962 producing lead, zinc, copper, pyrite, silver and gold (Regional NSW, 2021). All of the mine workings were underground with associated processing and transport above ground. Spreading of lead and zinc contamination from the site are the primary issues of concern (Regional NSW, 2021).

Lead (Pb) is emitted to the air from both natural and anthropogenic sources. Measured concentrations in ambient air have greatly reduced nationally following the phase-out of leaded fuels from 2000 to 2002, where typically urban concentrations are now less than 10% of the air quality criteria (NEPC, 2001). **Appendix 2** shows historic annual average lead concentration in

Australian capital cities from 1981 to 2000, after which monitoring ceased in urban areas. Ambient lead remains a risk in areas where local point sources exist, such as metal smelting facilities, mining operations and waste incineration. Inhalation and ingestion of lead at elevated levels can lead to a range of health impacts, including cancer, neurotoxicity, and reproductive toxicity.

Zinc (Zn) occurs widely in the environment, but adverse health effects can occur when exposure is high. Elevated exposure can occur through exposure to mining, smelting and processing or metal ores and metal plating.

Additionally, metals associated with mining and processing ore are of interest to this program. A suite of fifteen metals in air are analysed including: arsenic (As); barium (Ba); cadmium (Cd); chromium (Cr); cobalt (Co); copper (Cu); iron (Fe); lead (Pb); manganese (Mn); mercury (Hg); molybdenum (Mo); nickel (Ni); selenium (Se); titanium (Ti) and zinc (Zn).

3. STUDY AREA

The legacy Lake George Mine is in the town of Captains Flat, in the Southern Tablelands of rural New South Wales, approximately 50 km south-east of Canberra. Captains Flat has a distinctive valley terrain orientated roughly north to south, which is likely to steer winds in the northerly and southerly directions (refer to **Figure 3-1**). This is an important characteristic as wind speed and direction directly impact transport and dispersion of air pollutants.

Figure 3-1: Terrain features in and around Captains Flat, NSW (red high, purple low; Yamazaki et al, 2017)

The study area for the air quality monitoring program encompasses areas of former mining activities, including The Old Mine Site, Former Smelter, Northern Tailings Dump, and Former Rail Loadout Facility, which are located around and south-east to the Captains Flat Railway Station. The largest community area is north-east to the station, containing sensitive receptors such as residential properties and Captains Flat Public School. The project boundary and site elements are presented in **Figure 3-2**.

- HVAS sample location
 - Site element
- MET station

Figure 3-2: Project boundary and locations of interest

4. METHODOLOGY

4.1 Sampling design

The monitoring program involves environmental sampling of TSP and testing for lead and other heavy metals in particulate form. Five locations of concern and/or relevance within the study area were identified for sampling to be carried out. The five monitoring locations are shown in **Figure 3-2** and summarised in **Table 4-1** with the respective justification for selection. A meteorological station is maintained at one location (AQM2) to inform movement and dispersion of air.

ID	Location description	Address	Justification for selection
AQM1	Residence	Old Mine Road	Representative of potential impacts to the south-west. Located on elevated terrain relative to the other selected locations.
AQM2 & MET	Residence	2 Copper Creek Road	Identified as the nearest sensitive receptor (residents) to the northern tailings dump and the former rail loadout facility.
AQM3	Captains Flat former Preschool	27 Foxlow Street	Identified as a sensitive receptor of interest (residents) and representative of potential impacts to the south-east.
AQM4	New Preschool	Foxlow Street	Representative of potentials impacts to the largest community to the north-east.
AQM5	Residence	2 Braidwood Road	Representative of potential impacts to residents down-wind of the mine.

Table 4-1: Air	Quality	Monitoring	Locations
----------------	---------	------------	-----------

Sensitive receptors include locations where people reside and work, including residential properties, schools and parks. Remnants of materials from past above ground mine processing and transport activities are the source of contaminants (metals, particularly lead and zinc). Wind erosion is expected to be the main exposure pathway, linking pollutant sources to receptors; hence the importance of monitoring wind movements and understanding wind patterns. The five monitoring locations are deemed appropriate to provide results representative of the study area and encompasses the main sensitive receptors in the town.

4.2 Monitoring equipment and siting

High-volume air samplers (HVAS; Hi-Vol 3000) were utilised for sampling TSP. They consist of a TSP sampling head (i.e., inlet) that has a reported cut-point for particles of 50 μ m diameter or less. The sampler draws a known volume of air across a pre-weighed filter for 24-hours.

The instruments are calibrated and maintained by Ramboll, as far as practicable, consistent with the recommendations of *AS/NZS 3580.9.3* – *Method 9.3* – *Determination of suspended particulate matter* – *Total suspended particulate matter* (*TSP*) – *High volume sampler gravimetric method* and the manufacturers recommendations. Sampling is configured for a 24-hour period every 1 day in 6 (midnight to midnight). SCS services the instruments on a 6-day basis, commencing from 27 October 2021.

Quality assurance is done using a field blank to capture any influences of the handling and storage process. A blank sample paper is handled in the same way as the actual sample papers and remains on site throughout the sampling exercise. The blank sample is sent for laboratory analysis along with the actual samples. Established acceptance criterion for TSP field blanks is ± 8 mg, above which the handling procedure should be investigated for potential contamination.

A meteorological station was initially supplied by Rural Fire Service (RFS) and subsequently replaced by a project-owned station commissioned by Ramboll (more information in **Section 4.5**). Photos of the monitoring equipment in-situ are shown in **Appendix 3**.

Siting of all equipment was completed, as far as practicable, in accordance with the recommendations of *AS/NZS 3580.1.1 – Methods for sampling and analysis of ambient air – Part 1.1: Guide to siting air monitoring equipment*. Selecting monitoring locations requires compromises to meet the technical recommendations of *AS 3580.1.1* and practical conditions such as access approval, security and power availability.

Locating the AQM2 instrument was limited by sewer connections in the residence backyard, which limited trenching for electrical works. The monitoring location is obstructed by the house and shed between the instrument and the nearest potential source of interest, the former rail loadout facility.

Many residences in Captains Flat operate woodfires during the winter which are a significant source of particulate matter. Woodsmoke from the Old Mine Road (AQM1) residence chimney can be seen in **Appendix 3** near the monitoring location. A temporary air quality monitoring campaign completed for the Miners Road and Copper Creek Road Upgrade on behalf of Queanbeyan-Palerang Regional Council during October 2021 confirmed elevated particulate matter concentrations during the night-time period, likely a result of biomass burning in the town.

4.3 Measurement of metals in TSP

TSP are airborne solid particles and water droplets less than approximately 50 to 100 μm in aerodynamic diameter, consisting of a myriad of different constituents from various sources.

The samples are analysed for 15 heavy metals in TSP: As, Ba, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Mo, Ni, Se, Ti and Zn. The Australian Standard to measure lead in particulates (*AS/NZS 3580.9.15 Determination of suspended particulate matter – Particulate metals high or low volume sampler gravimetric collection – Inductively coupled plasma (ICP) spectrometric method)* requires measurement of the TSP fraction to analyse for lead content. Samples are weighed and analysed by a NATA accredited laboratory consistent with the recommendations of *AS 3580.9.15*.

4.4 Assessment criteria

Relevant NSW ambient air quality criteria for this monitoring program are presented in **Table 4-2**.

Pollutant	Averaging period	Criteria	Source
Lead	Annual	0.5 μg/m³	NEPC (1998)
Total suspended particulates (TSP)	Annual	90 µg/m³	NHMRC (1996)

Table 4-2: Air Quality Assessment Criteria

There are no NSW ambient air quality criteria for the 14 other heavy metals measured in this program.

4.5 Meteorology monitoring and terrain influences

Meteorology is a primary driver of transport and dispersion in the atmosphere. A Bureau of Meteorology (BoM) station is maintained in Tuggeranong, approximately 36 km to the north-west of Captains Flat. These data are unlikely to be representative of Captains Flat given the

differences in terrain, as Tuggeranong is a relatively flat urban environment. The nearest BoM station to Captains Flat is located in Braidwood, approximately 34.5 km to the north-east of Captains Flat. Braidwood may be more representative of the conditions at Captains Flat than Tuggeranong, but again the terrain differs significantly. Absence of local meteorology data in Captains Flat was identified as a data gap for the program in the Sampling and Analysis Quality Plan (SAQP; Ramboll, 2021).

The RFS loaned a meteorological station to the monitoring program for short-term use; prior to the project specific meteorological station being installed. The RFS meteorological station was decommissioned during the October reporting for use by RFS operations during fire season. Data between 22 June and 26 September 2021 was sourced from the RFS meteorological station, and data from 27 September 2021 onwards is sourced from the project meteorological station. From 7 August to 20 September 2022 the project station was not logging from capacity issues; meteorological data for this period was sourced from the BoM Goulburn Airport AWS station, located approximately 90 km to the north-east of Captains Flat. The capacity issue has now been resolved.

The RFS monitoring station measured wind speed and direction at 10 m height, wind speed, wind direction, temperature and humidity at 3 m height, and rainfall at ground level. During the June to August 2021 monitoring period, the 10 m wind sensors was calibrated south, so these data were corrected during analysis by 180°. Some intermittent data loss occurred from the station, caused by an issue with the firmware but data capture remained high (97.9% 10-minute data capture for the monitoring period). On 31 August 2021 the calibration and firmware issues were reported as rectified by RFS.

The project meteorological station (Lufft WSS800-UMB) measures wind speed and direction, temperature, relative humidity, air pressure, precipitation intensity, precipitation quantity and radiation at 10 m height. The sensors are mounted on a sensor arm fixed to a pump-up mast with lightning stake protection, with data capture and telemetry allowing remote access to the data.

4.6 Data presentation and analysis

Monitoring results including all data since program inception were analysed as described below. All generated graphs and plots will be expanded on as the monitoring program continues.

4.6.1 Meteorological conditions

Three sets of wind roses were generated to understand wind patterns and prevailing winds:

- Monthly wind roses with all available data.
- Monthly wind roses with data separated into day and night periods, determined by sunrise and sunset at location.
- Monthly wind roses with 24-hour averaged wind data for sample days only: these data is used to create the polar plots that must match the 24-hour pollutant data. This can be compared with the above wind roses using all raw data, and illustrates a limitation of the method, which is further discussed in **Section 5.4**.

Rainfall can contribute to suppressing particulate matter therefore a timeseries graph with daily rainfall data is presented for comparison with reported pollutant results is presented.

4.6.2 TSP and metal concentrations measured

Timeseries graphs of TSP and metals concentrations analysed since the beginning of the monitoring program were plotted for ease of visualization and identification of peak concentrations. Blank sample results are presented and discussed.

4.6.3 Potential factors influencing dispersion

Bivariate polar plots can be useful for source identification with longer datasets; this technique has been applied to the initial concentration data against the average wind conditions during each sampling day. The requirement to average 24-hour wind conditions to compare to the 24-hour sampling period is a limitation of the method, where wind conditions can vary considerably over a diurnal period (presented in the second set of wind roses mentioned in **Section 4.6.1**).

Additionally, the bivariate plots for the key pollutants TSP, lead and zinc are presented spatially on a topographical map in **Appendix 1**.

The plots were prepared using the openair data analysis package in R (Carslaw & Ropkins, 2012).

4.6.4 Correlations for potential source identification

The relationship between concentrations of air pollutants over time can provide an indication of whether the pollutants originated from the same source. Therefore, correlation matrices have been prepared to compare the relationship between each heavy metal and TSP.

The plots, developed using lattice multivariate data visualisation (Sarkar, 2007) in openair, display the correlation coefficient as a shape, colour and numeric value as a representation of a scatter plot. A perfect or near-perfect correlation is shown as a 45-degree sloped line, whereas zero correlation is shown as a circle.

4.7 Technical limitations

Data collection is limited to a 24-hour period every 1 day in 6, that is, data capture is not continuous which is a limitation of the method appropriate for this application. Moreover, as described in **Section 4.6.3**, the 24-hour sampling period is a limitation of the method, as results are given as a 24-hour average without capturing varying conditions within the day.

Weather during the reported period has been particularly wet due to a strong La Niña influence over Australian summer/autumn 2022. This may have had an impact in the local air quality and reported results as TSP, and consequently metal concentrations, are expected to be higher in drier weather.

As described in **Section 4.5**, the project meteorological station was monitoring but not logging for approximately 1.5 month during August and September 2022. In the absence of local data, meteorological data was sourced from a BoM station. Conditions were however notably different to those at Captains Flat (see **Section 5.2**), reinforcing the importance of having local meteorological data to understand site conditions for dispersion and transport of air pollutants.

5. **RESULTS**

5.1 Overview

Results from the monitoring period including all data since program inception are presented in the following sections:

- Meteorological conditions (Section 5.2).
- TSP and metal concentrations measured (Section 5.3).
- Potential factors influencing dispersion (Section 5.4).
- Correlations for potential source identification (Section 5.5).

5.2 Meteorology conditions

Wind roses from conditions measured at 10 m height at 2 Copper Creek Road, Captains Flat are presented in **Figure 5-1**. As described in **Section 4.5**, data from 7 August 13:00 to the end of the current monitoring period (15 September 2022) was sourced from the BoM Goulburn Airport AWS. Being in a different location with different terrain influences, differences are noted in the August and September 2022 wind roses compared with the previous months, suggesting these conditions are less representative of the local conditions.

Analysis of wind conditions shows prevailing winds are from south-west throughout the year, with the exception of June 2021/22 and July 2021 that recorded dominant winds coming from the north. Calmer conditions were recorded from November 2021 through to February 2022, with more distributed wind directions, with the exception of December which still showed south-westerly dominance. The strongest winds are generally 4 to 6 m/s, however in August, December and April 2021 stronger winds of 6 to 6.7 m/s were measured from the south-west. As observed in the wind roses from August and September 2022, wind speeds recorded by the BoM station are higher (up to 12.9 m/s) and with north-westerly prevalence.

Wind conditions also exhibit diurnal changes. When the data is separated into day and night periods, it shows the northerlies occur more often during the day and the south-westerlies occur during the night (see **Figure 5-2**).

Section 5.4 below presents polar plots using averaged wind conditions over 24-hours to match the 24-hour pollutant data. These averaged wind conditions for sample days only are shown in **Figure 5-3**, to illustrate a limitation of the method (further discussed in **Section 5.4**).

Figure 5-1: Monthly wind roses for all data collected at 2 Copper Creek road, 22 June 2021 to 15 September 2022 (produced with openair; Carslaw & Ropkins, 2012). Note: Data from 07 August 13:00 to 15 September sourced from BoM Goulburn Airport AWS.

Figure 5-2: Day and night wind roses (10 m) for all available data at 2 Copper Creek Road, Captains Flat, NSW, 22 June 2021 to 15 September 2022 (produced with openair; Carslaw & Ropkins, 2012). Note: Data from 07 August 13:00 to 15 September sourced from BoM Goulburn Airport AWS

Figure 5-3: 24-hour average wind roses for sample days (24-hour period) only (produced with openair; Carslaw & Ropkins, 2012). Note: Data from 07 August 13:00 to 15 September sourced from BoM Goulburn Airport AWS

The RFS meteorological station and project meteorological station rainfall data are presented below in **Figure 5-4**. No rainfall was measured from 22 June to mid-July after which moderate rainfall was measured. Heavy rainfall events with a total volume of over 50 mm measured in one day were recorded in January, April and May 2022. The Goulburn Airport AWS recorded much higher rainfall than the project station's in the same period in 2021 or any other month.

Figure 5-4: Daily rainfall measured to 15 September 2022. Note: Data from 07 August 13:00 to 15 September sourced from BoM Goulburn station.

5.3 TSP and heavy metal concentrations measured

Figure 5-5 to **Figure 5-20** show timeseries of TSP and each of the 15 metals analysed since the beginning of the monitoring program.

The average 24-hour TSP concentrations during the monitoring period is $18.7 \ \mu g/m^3$, remaining well below the annual average air quality criteria of $90 \ \mu g/m^3$. The following days and locations recorded concentrations above this annual criteria:

- 17 February 2022 at AQM2 (117.4 μg/m³);
- 10 August 2022 at AQM1 (97.2 μg/m³); and
- 28 August 2022 at AQM4 (109.1 μg/m³).

All 24-hour lead concentrations were below the annual average lead air quality criteria of 0.5 μ g/m³, averaging 0.004 μ g/m³ during the monitoring period. The annual average zinc concentration during the monitoring period is 51.9 μ g/m³.

Blank sample results are detailed in **Table 5-1** and are within the established acceptance criterion (blank TSP mass = ± 8 mg) except for the August 2022 sample (blank TSP mass = 11.3 mg). This result may suggest that the samples were not well handled or stored by the servicing contractor. The program has been modified since this period, with servicing by Ramboll from 16 September 2022.

Table 5-1: Blank sample details

Blank sample ID	Date analysed	Initial filter mass (mg)	Final filter mass (mg)	Blank TSP mass (mg)
AQM5 - HVS723	02/10/2021	2753.3	2755.2	1.9
AQM5 - HVS817	12/10/2021	2741.1	2744.4	3.3
AQM5 - HVS1183	13/12/2021	2684.8	2688.1	3.3
AQM5 - HVS1144	05/02/2022	2829.8	2836.0	6.2
AQM5 - HVS1136	06/04/2022	2821.5	2827	5.5
AQM5 - HVS1436	04/08/2022	2686.5	2697.8	11.3

Invalidated or missing samples during the monitoring program are summarised in **Table 5-2**. One sample was lost on 4 July 2021 from AQM5 when the instrument was impacted by high winds. Four sets of samples were invalidated from all sites (1 and 7 November 2021, 12 April and 24 May 2022), following some confusion about the sampling methodology when the program was handed over to SCS for servicing. Sampling during April and May was not completed by SCS. One sample from AQM2 on 18 May 2022 was not found on site on retrieval by Ramboll.

Date sampled	Site	Sample ID	Comments
04/07/2021	AQM 5	No sample	Lost during high winds
01/11/2021	AQM 1	AQM 1 - HVS847	Invalidated - not serviced on correct day by SCS
01/11/2021	AQM 2	AQM 2 - HVS848	Invalidated - not serviced on correct day by SCS
01/11/2021	AQM 3	AQM 3 - HVS846	Invalidated - not serviced on correct day by SCS
01/11/2021	AQM 4	AQM 4 - HVS844	Invalidated - not serviced on correct day by SCS
01/11/2021	AQM 5	AQM 5 – HVS845	Invalidated - not serviced on correct day by SCS
07/11/2021	AQM 1	AQM 1 - HVS854	Invalidated - not serviced on correct day by SCS
07/11/2021	AQM 2	AQM 2 - HVS855	Invalidated - not serviced on correct day by SCS
07/11/2021	AQM 3	AQM 3 - HVS849	Invalidated - not serviced on correct day by SCS
07/11/2021	AQM 4	AQM 4 - HVS853	Invalidated - not serviced on correct day by SCS
07/11/2021	AQM 5	AQM 5 - HVS856	Invalidated - not serviced on correct day by SCS
12/04/2022	AQM 1	AQM 1 - HVS1073	No sample – Not replaced by SCS
12/04/2022	AQM 2	AQM 2 - HVS1060	No sample – Not replaced by SCS
12/04/2022	AQM 3	AQM 3 - HVS985	No sample – Not replaced by SCS
12/04/2022	AQM 4	AQM 4 - HVS1170	No sample – Not replaced by SCS
12/04/2022	AQM 5	AQM 5 - HVS1163	No sample – Not replaced by SCS
18/04/2022	AQM 1	No sample	No sample – Not replaced by SCS
18/04/2022	AQM 2	No sample	No sample – Not replaced by SCS
18/04/2022	AQM 3	No sample	No sample – Not replaced by SCS
18/04/2022	AQM 4	No sample	No sample – Not replaced by SCS
18/04/2022	AQM 5	No sample	No sample – Not replaced by SCS
30/04/2022	AQM 1	No sample	No sample – Not replaced by SCS
30/04/2022	AQM 2	No sample	No sample – Not replaced by SCS

Table 5-2: Invalidated or missing samples

Date sampled	Site	Sample ID	Comments	
30/04/2022	AQM 3	No sample	No sample – Not replaced by SCS	
30/04/2022	AQM 4	No sample	No sample – Not replaced by SCS	
30/04/2022	AQM 5	No sample	No sample – Not replaced by SCS	
18/05/2022	AQM 2	No sample	Missing on retrieval	
24/05/2022	AQM 1	AQM 1 - HVS1155	No sample – Not replaced by SCS	
24/05/2022	AQM 2	AQM 2 - HVS1122	No sample – Not replaced by SCS	
24/05/2022	AQM 3	AQM 3 - HVS1133	No sample – Not replaced by SCS	
24/05/2022	AQM 4	AQM 4 - HVS1139	No sample – Not replaced by SCS	
24/05/2022	AQM 5	AQM 5 - HVS1246	No sample – Not replaced by SCS	
30/05/2022	AQM 1	No sample	No sample – Not replaced by SCS	
30/05/2022	AQM 2	No sample	No sample – Not replaced by SCS	
30/05/2022	AQM 3	No sample	No sample – Not replaced by SCS	
30/05/2022	AQM 4	No sample	No sample – Not replaced by SCS	
30/05/2022	AQM 5	No sample	No sample – Not replaced by SCS	
23/06/2022	AQM 3	AQM 3 - HVS1255	Filter damaged	
05/07/2022	AQM 1	AQM 1 - HVS1240	Invalidated	
05/07/2022	AQM 2	AQM 2 - HVS1243	Invalidated	
05/07/2022	AQM 3	AQM 3 - HVS1253	Invalidated	
05/07/2022	AQM 4	AQM 4 - HVS1270	Invalidated	
05/07/2022	AQM 5	AQM 5 - HVS1263	Invalidated	
11/07/2022	AQM 1	No sample		
11/07/2022	AQM 2	No sample		
11/07/2022	AQM 3	No sample		
11/07/2022	AQM 4	No sample		
11/07/2022	AQM 5	No sample		
17/07/2022	AQM 2	AQM 2 - HVS1234	Filter damaged	
29/07/2022	AQM 1	No sample		
29/07/2022	AQM 2	No sample		
29/07/2022	AQM 3	No sample		
29/07/2022	AQM 4	No sample		
29/07/2022	AQM 5	No sample		
10/08/2022	AQM 2	AQM 2 - HVS1259	Filter damaged	
16/08/2022	AQM 1	No sample	Missing	
16/08/2022	AQM 2	No sample	Missing	
16/08/2022	AQM 3	No sample	Missing	
16/08/2022	AQM 4	HVS 1141	Missing	
16/08/2022	AQM 5	No sample	Missing	
28/08/2022	AQM 2	AQM 2 - HVS1358	Filter damaged	
09/09/2022	AQM 3	AQM 3 - HVS1250	Filter damaged	

Date sampled	Site	Sample ID	Comments
09/09/2022	AQM 5	AQM 5 - HVS1259	Filter damaged
15/09/2022	AQM 1	AQM 1 - HVS_UNKNOWN	Missing
15/09/2022	AQM 2	AQM 2 - HVS_UNKNOWN	Missing
15/09/2022	AQM 3	AQM 3 - HVS_UNKNOWN	Missing
15/09/2022	AQM 4	AQM 4 - HVS_UNKNOWN	Missing
15/09/2022	AQM 5	AQM 5 - HVS_UNKNOWN	Missing

site 🔶 AQM 1 🔶 AQM 2 🔶 AQM 3 🔶 AQM 4 🔶 AQM 5

Figure 5-5: 24-hour total suspended particulate (TSP) concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0061 μ g/m³)

Figure 5-6: 24-hour lead concentration measured at each sampling location every one day in six, from 22 June 2021 (annual average lead criteria not shown: 0.5 μ g/m³; LOR 0.0006 μ g/m³)

Figure 5-7: 24-hour arsenic concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 μ g/m³)

Figure 5-8: 24-hour barium concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 μ g/m³)

Figure 5-9: 24-hour cadmium concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0003 μ g/m³)

Figure 5-10: 24-hour chromium concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 μ g/m³)

Figure 5-11: 24-hour cobalt concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 μ g/m³)

Figure 5-12: 24-hour copper concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 $\mu g/m^3)$

Figure 5-13: 24-hour iron concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0061 μ g/m³)

Figure 5-14: 24-hour manganese concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 μ g/m³)

Figure 5-15: 24-hour mercury concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0001 μ g/m³¹) Note: the only sample with detectable concentration was at AQM2 on 22 July 2021 (0.0004 μ g/m³).

 $^{^{1}}$ LOR 0.0003 µg/m³ (5 times dilution needed to be placed) in the AQM1 samples from the 05, 11, 17, 23 and 29 June, and 17 and 23 July 2022, the AQM2 samples from the 05, 11, 17, 23 and 29 June, and 23 July 2022, and the AQM3 samples from the 05 and 11 June 2022.

Figure 5-16: 24-hour molybdenum concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 $\mu g/m^3$)

Figure 5-17: 24-hour nickel concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 μ g/m³)

Figure 5-18: 24-hour selenium concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 $\mu g/m^3)$

Figure 5-19: 24-hour titanium concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 μ g/m³)

Figure 5-20: 24-hour zinc concentration measured at each sampling location every one day in six, from 22 June 2021 (LOR 0.0006 $\mu g/m^3$)

5.3.1 Investigation days

Days of comparatively high results were selected for further investigation and are summarised in **Table 5-3**. The daily-average TSP concentrations from the 10 and 28 August 2022 recorded by AQM1 and AQM4, respectively, that exceeded the annual criteria were not further investigated due to the absence of local meteorological data which can lead to erroneous conclusions. Moreover, these samples are from August when QA was not met, suggesting potential contamination during the handling procedure.

Location and sample ID	Date	Pollutant (concentration)	Reason	On the day and antecedent rainfall
AQM 2 - HVS541	22/07/2021	Mercury (0.0004 μg/m³)	Only sample with detected concentration (above LOR)	2 mm, first rain event since the beginning of monitoring
AQM 2 - HVS1059	17/02/2022	TSP (117.4 μg/m³)	Above annual average criteria	0 mm, 6 th day without rain

Table 5-3: Investigation days

On 22 July 2021, mercury was recorded with concentration above LOR at location AQM2. On this day 2 mm of rain were recorded however conditions were expected to have been dry as no rainfall had been recorded for at least a month prior. Wind roses (**Figure 5-21**) of the day show night winds coming from south-west, and stronger day winds coming from north-east (northern tailings dump).

Figure 5-21: Wind roses (10 m) for 22 July 2021 at 2 Copper Creek Road, Captains Flat, NSW (produced with openair; Carslaw & Ropkins, 2012)

On 17 February 2022, TSP was recorded with concentration above the annual average criterion at location AQM2. It is worth highlighting that this criterion applies for annual period averages, so the comparison to a daily average is a conservative approach to identify concentrations worth further investigation. Rainfall results indicate that the weather was dry, with no recorded rainfall on that or 5 days prior. Wind roses (**Figure 5-22**) of the day show night winds coming from south-west, and stronger day winds coming from north (border of the northern tailings dump) and north-west.

Figure 5-22: Wind roses (10 m) for 17 February 2022 at 2 Copper Creek Road, Captains Flat, NSW (produced with openair; Carslaw & Ropkins, 2012)

5.4 Potential factors influencing dispersion

Bivariate polar plots are presented for TSP and each heavy metal analysed in **Figure 5-23** to **Figure 5-38**. Additionally, the bivariate plots for key pollutants TSP, lead and zinc are presented spatially on a topographical map in **Appendix 1**.

Figure 5-23: Polar plots showing 24-hour TSP concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021 (prepared with openair; Carslaw & Ropkins, 2012)

Figure 5-24: Polar plots showing 24-hour lead concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-25: Polar plots showing 24-hour arsenic concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-26: Polar plots showing 24-hour barium concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-27: Polar plots showing 24-hour cadmium concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-28: Polar plots showing 24-hour chromium concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-29: Polar plots showing 24-hour cobalt concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-30: Polar plots showing 24-hour copper concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-31: Polar plots showing 24-hour iron concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-32: Polar plots showing 24-hour manganese concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-33: Polar plots showing 24-hour mercury concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-34: Polar plots showing 24-hour molybdenum concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-35: Polar plots showing 24-hour nickel concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-36: Polar plots showing 24-hour selenium concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-37: Polar plots showing 24-hour titanium concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

Figure 5-38: Polar plots showing 24-hour zinc concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021

5.5 Correlations for potential source identification

Correlation matrices are presented for each sampling location from **Figure 5-39** to **Figure 5-43** to compare the relationship between each heavy metal and TSP. Note that the data is clustered

by relationship, so each plot is ordered differently depending on the determined correlation, and there are limits on presentation when pollutants are below LOR. **Figure 5-44** presents a comparison between the five locations, where the number of pollutants was reduced to 13 (pollutants with concentrations below LOR in at least one location were disregarded) and the cluster of pollutants was forced in the same order for ease of comparison.

The data shows strong correlations when comparing some pollutants, particularly between copper, manganese, cobalt, molybdenum, nickel, chromium and iron.

Figure 5-39: Heavy metal and TSP correlations in all samples collected since 22 June 2021 at AQM1 – Old Mine Road

Figure 5-40: Heavy metal and TSP correlations in all samples collected since 22 June 2021 at AQM2 – 2 Copper Creek Rd

Figure 5-41: Heavy metal and TSP correlations in all samples collected since 22 June 2021 at AQM3 – Former Pre-School

Figure 5-42: Heavy metal and TSP correlations in all samples collected since 22 June 2021 at AQM4 – New Preschool

Figure 5-43: Heavy metal and TSP correlations in all samples collected since 22 June 2021 at AQM5 – 2 Braidwood Road

Figure 5-44: Heavy metal and TSP correlations in all samples collected since 22 June 2021 at all locations

6. **DISCUSSION**

AQM3 and AQM4 reported similar results for some pollutants (i.e. As, Ba, Cr, Co, Cu, Fe, Mn, Ni, Mo, Se, Ti, Zn), suggesting they are affected by the same pollution source. A very strong correlation exists between Cr, Co, Cu, Fe, Mn, Mo and Ni, suggesting that these pollutants are from the same source(s).

AQM2 recorded comparatively high concentrations of Hg and TSP. Investigation of weather conditions on these days suggests that the source of pollution may originate from the northern tailings dump especially for Hg, with pollutants transported by relatively stronger daytime winds. This monitoring location is near the former rail loadout facility, a potential source of pollution.

Analysis of some polar plots (i.e. TSP, Zn, As, Ti and Ba) suggests that a north-south transport of the pollutants is dominant, affecting locations AQM3 and AQM4 in particular. This is in accordance with the expected wind pattern from the distinctive valley terrain in the north-south orientation.

7. LIMITATIONS

This document is issued in confidence to Regional NSW for the purposes of assessing air quality risks to inform the lead management plan for Captains Flat, NSW. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of Ramboll Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of Ramboll Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, Ramboll Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

8. **REFERENCES**

Carslaw, D. & Ropkins, K. (2012). Openair - an R package for air quality data analysis. Environmental Modelling & Software. Volume 27-28, 52-61.

NEPC (1998). Ambient Air – National Environment Protection Measure for Ambient Air Quality, National Environment Protection Council, Canberra.

NEPC (2001). Technical Paper No. 9: Lead Monitoring. National Environment Protection (Ambient Air Quality) Measure. May 2001.

NHMRC (1996). Ambient Air Quality Goals Recommended by the National Health and Medical Research Council, National Health and Medical Research Council, Canberra.

Ramboll (2021). Captains Flat Management Plan – Review of Information and sampling and analysis quality plan. Revision 1, dated 2 June 2021, reference 318001193-T02.

Regional NSW (2021). Captains Flat (Lake George) Mine – Case Study. Retrieved on 31 August 2021 from <u>https://www.regional.nsw.gov.au/meg/exploring-and-mining/legacy-mines-program/case-studies/captains-flat-lake-george-mine</u>

Sarkar, D. (2007). Lattice Multivariate Data Visualisation with R. New York: Springer.

Yamazaki D., D. Ikeshima, R. Tawatari, T. Yamaguchi, F. O'Loughlin, J.C. Neal, C.C. Sampson, S. Kanae & P.D. Bates (2017). A high accuracy map of global terrain elevations. Geophysical Research Letters, vol.44, pp.5844-5853, doi: 10.1002/2017GL072874. <u>https://en-au.topographic-map.com/maps/jyzc/Captains-Flat/</u>

APPENDIX 1 SPATIAL BIVARIATE PLOTS

Legier | e opensireeling contributors, co-b 1-3A, e opensireeling contributor.

Figure 8-1: Polar map plots showing 24-hour TSP concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021 (prepared with openair; Carslaw & Ropkins, 2012)

Figure 8-2: Polar map plots showing 24-hour lead concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021 (prepared with openair; Carslaw & Ropkins, 2012)

Figure 8-3: Polar map plots showing 24-hour zinc concentration and 24-hour average wind speed and direction at each monitoring location, from 22 June 2021 (prepared with openair; Carslaw & Ropkins, 2012)

APPENDIX 2 HISTORICAL LEAD CONCENTRATIONS AROUND AUSTRALIA (NEPC, 2001)

Figure A: Annual lead concentrations in Australian Capital Cities, 1981-2000 (NEPC, 2001)

APPENDIX 3 IMAGES OF AIR QUALITY MONITORING INSTRUMENTS IN-SITU

Figure B: High-volume air samplers and meteorological station in-situ in Captains Flat, NSW

APPENDIX 4 LABORATORY REPORTS

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Greer Laing

Report Project name Project ID Received Date 934219-A CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Oct 24, 2022

Client Sample ID			AQM 3 - HVS1250
Sample Matrix			Filter paper
Eurofins Sample No.			M22- Oc0047640
Date Sampled			Sep 09, 2022
Test/Reference	LOR	Unit	
Heavy Metals			
Arsenic	1.0	Total ug	6.9
Barium	1.0	Total ug	55000
Cadmium	0.5	Total ug	< 0.5
Chromium	1.0	Total ug	20
Cobalt	1.0	Total ug	< 1
Copper	1.0	Total ug	6.5
Iron	10	Total ug	670
Lead	1	Total ug	7.3
Manganese	1.0	Total ug	15
Mercury	0.1	Total ug	< 0.1
Molybdenum	1	Total ug	< 1
Nickel	1.0	Total ug	1.7
Selenium	1.0	Total ug	< 1
Titanium	1.0	Total ug	16
Zinc	1	Total ug	37000
Sample Comment			Filter Damaged
Particulates - Final weighing	0.01	mg	2712.6
Particulates - Initial weighing	0.01	mg	2768.2

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Oct 24, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Particulates - Final weighing	Field	Oct 24, 2022	30 Days
- Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filters)			
Particulates - Initial weighing	Field	Oct 25, 2022	30 Days
Mothod: Filters weighed according to AS 3640 (Inholphia) AS 2005 (Pospirable) AS4223.3 (Stack Filters) & (75-INS-4033 (HV/AS - Nor	NATA Endorsed)	

Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filters) & QS-INS-4033 (HVAS - Non NATA Endorsed).

			Eurofins Env	vironment Testing	g Australia Pty Ltd														Euro	ofins A	RL Pt	y Ltd	Euro	ofins Environm	ent Testing NZ Ltd
ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254		5 521 Geelong Id 19/8 Lewa Ith Grovedale VIC 3216 5000 Tel: +61 3 te# 1254 NATA# 12	Sydne lan Street 179 M: Girraw S564 5000 Tel: +6 61 Site# 1254 NATA#	Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 4 NATA# 1261 Site# 18:		Canberra J Unit 1,2 Dacre Street Mitchell ACT 2911 00 Tel: +61 2 6113 8091 18217		Brisbane iet 1/21 Smallwood Place Murarrie QLD 4172 91 Tei: +61 7 3902 4600 NATA# 1261 Site# 20794		Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 34 NATA# 1261 Site# 25079			ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370		<u>8</u> 4 2370	- NZBN: 9429046024954 - Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327		Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290							
Co Ad	ompany Name: Idress:	Ramboll Au Level 3/100 North Sydne NSW 2060	stralia Pty Lto Pacific Highy ey	d way			C R P F	Order Report Phone Fax:	No.: : #:		31800 93421 02 99 02 99)1193 9 54 81 54 81	18 50						Recei Due: Priori Conta	ived: ty: act Na	ame:		Oct 24 Oct 3 5 Day Greer	4, 2022 8:30 / 1, 2022 / · Laing	λM
Pro Pro	oject Name: oject ID:	CAPTAINS 318001193	FLAT LEAD	MANAGEMENT	PLAN													Eu	rofins	s Ana	lytica	I Serv	/ices	Manager : An	drew Black
		Si	ample Detail			Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Particulates - Final weighing	Particulates - Initial weighing	Sample Comment	Selenium	Titanium	Zinc		
Melk	oourne Laborato	ory - NATA # 12	261 Site # 12	254		X	X	Х	Х	X	Х	Х	X	Х	X	Х	х	X	Х	Х	X	X	X	-	
Exte No	ernal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																			-	
1	AQM 3 - HVS1250	Sep 09, 2022		Filter paper	M22-Oc004764	0 x	x	x	х	x	х	x	x	х	x	х	х	x	х	х	x	x	x	1	
Test	Counts	1			•	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (<i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
 - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Andrew Black Scott Beddoes Analytical Services Manager Senior Analyst-Metal

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Acc Accredita Site Numl Accredited fr NATA is a sig

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Greer Laing

Report
Project name
Project ID
Received Date

930132-A CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Oct 07, 2022

Client Sample ID			AQM 1 - HVS1235	AQM 1 - HVS1352	AQM 1 - HVS1351	AQM 1 - HVS1350
Sample Matrix			Filter paper	Filter paper	Filter paper	Filter paper
Eurofins Sample No.			S22- Oc0015556	S22- Oc0015557	S22- Oc0015558	S22- Oc0015559
Date Sampled			Aug 04, 2022	Aug 10, 2022	Aug 22, 2022	Aug 28, 2022
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	1.0	Total ug	14	11	8.5	15
Barium	1.0	Total ug	84000	91000	120000	69000
Cadmium	0.5	Total ug	< 0.5	< 0.5	2.1	< 0.5
Chromium	1.0	Total ug	4500	2200	2200	4200
Cobalt	1.0	Total ug	61	29	29	60
Copper	1.0	Total ug	110	58	59	110
Iron	10	Total ug	19000	9800	9800	18000
Lead	1	Total ug	9.8	7.2	8.0	10
Manganese	1.0	Total ug	290	150	160	300
Mercury	0.1	Total ug	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	1	Total ug	550	280	270	510
Nickel	1.0	Total ug	2600	1300	1300	2400
Selenium	1.0	Total ug	< 1	< 1	< 1	< 1
Titanium	1.0	Total ug	22	18	22	35
Zinc	1	Total ug	58000	51000	50000	81000
Particulates - Final weighing	0.01	mg	2839.2	2847.9	2707.2	2705.3
Particulates - Initial weighing	0.01	mg	2835.6	2689.7	2683.2	2696.8

Client Sample ID Sample Matrix Eurofins Sample No.			AQM 1 - HVS1349 Filter paper S22- Oc0015560	AQM 1 - HVS1348 Filter paper S22- Oc0015561
Date Sampled			Sep 03, 2022	Sep 09, 2022
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	1.0	Total ug	12	18
Barium	1.0	Total ug	110000	220000
Cadmium	0.5	Total ug	< 0.5	< 0.5
Chromium	1.0	Total ug	1600	4600
Cobalt	1.0	Total ug	20	64
Copper	1.0	Total ug	44	120
Iron	10	Total ug	7500	21000

Client Sample ID Sample Matrix Eurofins Sample No.			AQM 1 - HVS1349 Filter paper S22- Oc0015560	AQM 1 - HVS1348 Filter paper S22- Oc0015561
Test/Reference	LOR	Unit	Sep 03, 2022	3ep 09, 2022
Heavy Metals				
Lead	1	Total ug	6.6	9.3
Manganese	1.0	Total ug	120	330
Mercury	0.1	Total ug	< 0.1	< 0.1
Molybdenum	1	Total ug	190	580
Nickel	1.0	Total ug	930	2800
Selenium	1.0	Total ug	< 1	< 1
Titanium	1.0	Total ug	32	39
Zinc	1	Total ug	71000	100000
Particulates - Final weighing	0.01	mg	2713.3	2706.3
Particulates - Initial weighing	0.01	mg	2690.4	2698.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Oct 10, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Particulates - Final weighing	Field	Oct 10, 2022	30 Days
- Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filters)			
Particulates - Initial weighing	Field	Oct 10, 2022	30 Days
Method: Filters weighed according to AS 2640 (Inholable) AS 2005 (Despirable) AS 4222 2 (Stock Filters) & C	SINE 4022 (U)/AS Non N	IATA Endorood)	

Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filters) & QS-INS-4033 (HVAS - Non NATA Endorsed).

•		C !	Eurofins Env	vironment Te	esting Australia Pty Ltd														Eurofins ARL Pty Ltd ABN: 91 05 0159 898			y Ltd	Eurofins Environment Testing NZ Ltd		
web: v email:	Melbourne Geelong 6 Monterey Road 19/8 Lewalan S Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254 NATA# 1261 Site# 1254				long Sydne Lewalan Street 179 Ma vedale Girraw 3216 NSW 2 +61 3 8564 5000 Tel: +6 'A# 1261 Site# 1254 NATA#	/ igowar R een 145 1 2 9900 1261 Sit	oad 8400 e# 1821	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 217			B t 1, Q 1 T N	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 20794			Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 4 NATA# 1261 Site# 25079			Perth 46-48 Banksia Road Welshpool 3 WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370			4 370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327		Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290	
Company Name: Ramboll Australia Pty Ltd Address: Level 3/100 Pacific Highway North Sydney NSW 2060						O R P F	rder N eport hone: ax:	No.: #:	3 9 0 0	31800 93013 92 995 92 995	1193 2 54 81 54 81	18 50						Recei Due: Priori Conta	ived: ty: act Na	ame:		Oct 7, Oct 14 5 Day Greer	, 2022 1:50 P 4, 2022 Laing	М	
Pr Pr	Project Name:CAPTAINS FLAT LEAD MANAGEMENT PLANProject ID:318001193																	Eu	rofins	s Ana	lytica	l Serv	vices I	Manager : Ar	drew Black
Sample Detail							Barium	Cadmium	Chromium	Cobalt	Copper	HOLD	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Particulates - Final weighing	Particulates - Initial weighing	Selenium	Titanium	Zinc		
Mel	bourne Laborato	ory - NATA # 12	261 Site # 12	254		X	Х	Х	Х	Х	Х	X	Х	Х	X	Х	х	X	Х	Х	X	х	Х		
Ext	ernal Laboratory	1	1	1]	
No	Sample ID	Sample Date	Sampling Time	Matrix	x LAB ID																				
1	AQM 1 - HVS1235	Aug 04, 2022		Filter pape	er S22-Oc0015556	3 x	x	х	x	x	х		x	х	x	x	х	x	х	х	x	х	х		
2	AQM 1 - HVS1352	Aug 10, 2022		Filter pape	er S22-Oc0015557	′ x	x	х	х	x	х		x	х	x	х	х	x	х	х	x	х	х		
3	AQM 1 - HVS1351	Aug 22, 2022		Filter pape	er S22-Oc0015558	³ x	x	x	x	x	х		x	х	x	x	х	x	x	х	x	х	x		
4	AQM 1 - HVS1350	Aug 28, 2022		Filter pape	er S22-Oc0015559) х	x	х	х	х	х		x	х	x	х	х	x	х	х	x	х	х		
5	AQM 1 - HVS1349	Sep 03, 2022		Filter pape	er S22-Oc0015560) х	x	х	х	х	х		x	х	x	х	х	x	х	х	x	х	х		
6	AQM 1 - HVS1348	Sep 09, 2022		Filter pape	er S22-Oc001556 ⁻	I x	x	x	х	х	х		x	х	x	х	х	x	x	х	x	х	x	1	
7	AQM 1 - HVS_UNKNO WN	Sep 15, 2022		Filter pape	er S22-Oc0015562	2						x													
Tes	t Counts				•	6	6	6	6	6	6	1	6	6	6	6	6	6	6	6	6	6	6]	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
 - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Andrew Black Emily Rosenberg Analytical Services Manager Senior Analyst-Metal

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredit Accreditation Site Number 1 Accredited for cor

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Greer Laing

Report
Project name
Project ID
Received Date

930125-A CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Oct 07, 2022

Client Sample ID			AQM 5 - HVS1258	AQM 5 - HVS1371	AQM 5 - HVS1370	AQM 5 - HVS1369		
Sample Matrix			Filter paper	Filter paper	Filter paper	Filter paper		
Eurofins Sample No.			S22- Oc0015515	S22- Oc0015516	S22- Oc0015517	S22- Oc0015518		
Date Sampled			Aug 04, 2022	Aug 10, 2022	Aug 22, 2022	Aug 28, 2022		
Test/Reference	LOR	Unit						
Heavy Metals								
Arsenic	1.0	Total ug	2.4	2.8	2.5	2.8		
Barium	1.0	Total ug	16000	18000	18000	10000		
Cadmium	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5		
Chromium	1.0	Total ug	5.9	8.5	7.4	540		
Cobalt	1.0	Total ug	< 1	< 1	< 1	6.3		
Copper	1.0	Total ug	1.2	1.6	2.1	14		
Iron	10	Total ug	120	210	160	2300		
Lead	1	Total ug	1.6	2.0	3.5	2.1		
Manganese	1.0	Total ug	3.3	5.3	5.8	36		
Mercury	0.1	Total ug	< 0.1	< 0.1	< 0.1	< 0.1		
Molybdenum	1	Total ug	< 1	< 1	< 1	61		
Nickel	1.0	Total ug	1.1	2.6	1.8	320		
Selenium	1.0	Total ug	< 1	< 1	< 1	< 1		
Titanium	1.0	Total ug	4.5	12	6.3	5.3		
Zinc	1	Total ug	11000	12000	12000	6900		
Particulates - Final weighing	0.01	mg	2855.3	2849.5	2755.4	2749		
Particulates - Initial weighing	0.01	mg	2817.1	2704.2	2704.4	2687		

Client Sample ID			AQM 5 - HVS1366	AQM 5 - HVS1259
Sample Matrix			Filter paper	Filter paper
Eurofins Sample No.			S22- Oc0015519	S22- Oc0015520
Date Sampled			Sep 03, 2022	Sep 09, 2022
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	1.0	Total ug	2.9	3.5
Barium	1.0	Total ug	20000	25000
Cadmium	0.5	Total ug	< 0.5	< 0.5
Chromium	1.0	Total ug	7.5	11
Cobalt	1.0	Total ug	< 1	< 1
Copper	1.0	Total ug	4.1	2.4
Iron	10	Total ug	150	170

Client Sample ID Sample Matrix Eurofins Sample No.			AQM 5 - HVS1366 Filter paper S22- Oc0015519	AQM 5 - HVS1259 Filter paper S22- Oc0015520
Date Sampled	LOR	Linit	Sep 03, 2022	Sep 09, 2022
Heavy Metals	LOIK	Unit		
Lead	1	Total ug	2.0	2.1
Manganese	1.0	Total ug	5.6	6.1
Mercury	0.1	Total ug	< 0.1	< 0.1
Molybdenum	1	Total ug	< 1	< 1
Nickel	1.0	Total ug	1.5	2.7
Selenium	1.0	Total ug	< 1	< 1
Titanium	1.0	Total ug	5.7	5.2
Zinc	1	Total ug	14000	18000
Particulates - Final weighing	0.01	mg	2706.2	2720.1
Particulates - Initial weighing	0.01	mg	2695.7	2830.5

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Oct 10, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Mercury	Melbourne	Oct 10, 2022	28 Days
- Method: SOP #6 Analysis of Volatile Organic Compounds in Passivated Canisters EPA Method TO-15			
Particulates - Final weighing	Field	Oct 10, 2022	30 Days
- Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filter	rs)		
Particulates - Initial weighing	Field	Oct 10, 2022	30 Days
- Method: Filters weighed according to AS 3640 (Inhalable) AS 2985 (Respirable) AS4323.3 (Stack Filter	s) & QS-INS-4033 (HVAS - No	on NATA Endorsed).	

le), AS 2985 (Respirable), AS4323.3 (S -4033 (HVAS

•		C !	Eurofins Env	vironment Tes	sting Australia Pty Ltd														Eurofins ARL Pty Ltd			y Ltd	Eurofins Environment Testing NZ Ltd		
web: v email:	Web: www.eurofins.com.au email: EnviroSales@eurofins.com				Sydnet Lewalan Street 179 Ma edale Girrawa 216 NSW 2 61 3 8564 5000 Tel: +6 # 1261 Site# 1254 NATA#	/ igowar R een 145 1 2 9900 1261 Sit	oad 8400 e# 1821	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911) Tel: +61 2 6113 8091 3217			B t 1, Q 1 T N	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 20794			Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 4 NATA# 1261 Site# 25079			Perth 46-48 Banksia Road Welshpool 3 WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370			4 370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327		Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290	
Company Name: Ramboll Australia Pty Ltd Address: Level 3/100 Pacific Highway North Sydney NSW 2060						O R P F	rder N eport hone: ax:	No.: #:	3 9 0 0	31800 93012 92 995 92 995	1193 5 54 81 54 81	18 50						Recei Due: Priori Conta	ived: ty: act Na	ame:		Oct 7, Oct 14 5 Day Greer	, 2022 1:50 P 4, 2022 Laing	М	
Project Name:CAPTAINS FLAT LEAD MANAGEMENT PLANProject ID:318001193																		Eu	rofins	s Ana	lytica	l Serv	vices I	Manager : Ar	ndrew Black
Sample Detail							Barium	Cadmium	Chromium	Cobalt	Copper	HOLD	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Particulates - Final weighing	Particulates - Initial weighing	Selenium	Titanium	Zinc		
Mel	bourne Laborate	ory - NATA # 12	261 Site # 12	254		Х	Х	х	Х	Х	Х	х	Х	Х	Х	Х	х	X	х	Х	X	Х	х]	
Ext	ernal Laboratory	1	1		T																				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																				
1	AQM 5 - HVS1258	Aug 04, 2022		Filter pape	r S22-Oc0015518	5 x	x	х	x	x	х		x	х	x	x	х	x	х	х	x	х	х		
2	AQM 5 - HVS1371	Aug 10, 2022		Filter pape	r S22-Oc0015516	» х	x	х	х	х	х		x	х	x	х	х	x	х	х	x	х	х		
3	AQM 5 - HVS1370	Aug 22, 2022		Filter pape	r S22-Oc0015517	′ x	x	х	х	x	х		x	х	x	x	х	x	х	х	x	х	х		
4	AQM 5 - HVS1369	Aug 28, 2022		Filter pape	r S22-Oc0015518	³ x	x	х	х	x	х		x	х	x	х	х	x	х	х	x	х	х		
5	AQM 5 - HVS1366	Sep 03, 2022		Filter pape	r S22-Oc0015519) x	x	х	х	х	х		х	х	x	х	х	x	х	х	x	х	х		
6	AQM 5 - HVS1259	Sep 09, 2022		Filter pape	r S22-Oc0015520) x	х	х	х	х	х		х	х	х	х	х	x	х	х	х	х	х		
7	AQM 5 - HVS_UNKNO WN	Sep 15, 2022		Filter pape	r S22-Oc0015521							х													
Tes	t Counts					6	6	6	6	6	6	1	6	6	6	6	6	6	6	6	6	6	6]	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

АРНА	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
 - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Bonnie Pu Emily Rosenberg Analytical Services Manager Senior Analyst-Metal

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

A tto	nti	on	
ЛЦС		υu	

Greer Laing

Report Project name Project ID Received Date 930122-A CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Oct 07, 2022

		BLANK - HVS 1436
		Filter paper
		S22- Oc0015513
		Aug 04, 2022
LOR	Unit	
1.0	Total ug	19
1.0	Total ug	88000
0.5	Total ug	0.5
1.0	Total ug	5600
1.0	Total ug	79
1.0	Total ug	130
10	Total ug	24000
1	Total ug	9.6
1.0	Total ug	380
0.1	Total ug	< 0.1
1	Total ug	700
1.0	Total ug	3300
1.0	Total ug	< 1
1.0	Total ug	29
1	Total ug	92000
0.01	mg	2697.8
0.01	mg	2686.5
	LOR 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1 1.0 1.0	LOR Unit 1.0 Total ug 1.0 Total ug 0.5 Total ug 1.0 Total ug

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Oct 10, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Particulates - Final weighing	Field	Oct 10, 2022	30 Days
- Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filters)			
Particulates - Initial weighing	Field	Oct 10, 2022	30 Days
Method: Filters weighed according to AS 2640 (Inholable) AS 2005 (Despirable) AS 4222 2 (Stock Filters) & C	SINE 4022 (U)/AS Non N	IATA Endorood)	

Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filters) & QS-INS-4033 (HVAS - Non NATA Endorsed).

		~.	Eurofins Env	vironment Testing	g Australia Pty Lt	ł													Euro	ofins A	RL Pt	y Ltd	Eurofins Environm	ent Testing NZ Ltd
web: www.eurofins.com.au email: EnviroSales@eurofins.com		ABN: 50 005 085 521 Melbourne Geelong Sy 6 Monterey Road 19/8 Lewalan Street 17 Dandenong South Grovedale Gi VIC 3175 VIC 3216 NS Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254 NATA# 1261 Site# 1254 N/		Sydn lan Street 179 M Girra NSW 8564 5000 Tel: + 61 Site# 1254 NATA	Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 NATA# 1261 Site# 18		Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 0 Tel: +61 2 6113 8091 8217		Brisbane # 1/21 Smallwood Place Murarrie QLD 4172 # Tel: +61 7 3902 4600 NATA# 1261 Site# 2079/		Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 94 NATA# 1261 Site# 25079			ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370			8 4 370	NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290					
Co Ad	mpany Name: Idress:	Ramboll Au Level 3/100 North Sydne NSW 2060	stralia Pty Lto Pacific Highv ey	d way			C F F	Order Report Phone Fax:	No.: t #: :		31800 93012 92 999 92 999	01193 22 54 81 54 81	18 50						Recei Due: Priori Conta	ived: ty: act Na	ame:		Oct 7, 2022 1:50 Pl Oct 14, 2022 5 Day Greer Laing	М
Pro Pro	oject Name: oject ID:	CAPTAINS 318001193	FLAT LEAD	MANAGEMENT	PLAN													Eu	rofins	s Ana	lytica	Serv	vices Manager : An	drew Black
		Si	ample Detail			Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Particulates - Final weighing	Particulates - Initial weighing	Selenium	Titanium	Zinc		
Melb	ourne Laborato	ry - NATA # 12	261 Site # 12	.54		X	X	X	X	X	Х	X	Х	Х	X	Х	Х	X	Х	Х	X	Х		
Exte No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																		-	
1	BLANK - HVS 1436	Aug 04, 2022		Filter paper	S22-Oc00155	3 _X	x	x	х	х	х	х	х	х	x	х	х	x	х	х	x	х		
Test	Counts			•		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

erinte		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	N/A
Some samples have been subcontracted	No

Authorised by:

Bonnie Pu Emily Rosenberg Analytical Services Manager Senior Analyst-Metal

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	

Greer Laing

Report Project name Project ID Received Date 930120-A CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Oct 07, 2022

Client Sample ID			AQM 2 - HVS1359	AQM 2 - HVS1259	AQM 2 - HVS1235	AQM 2 - HVS1358
Sample Matrix			Filter paper	Filter paper	Filter paper	Filter paper
Eurofins Sample No.			S22- Oc0015506	S22- Oc0015507	S22- Oc0015508	S22- Oc0015509
Date Sampled			Aug 04, 2022	Aug 10, 2022	Aug 22, 2022	Aug 28, 2022
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	1.0	Total ug	2.7	4.5	3.3	3.2
Barium	1.0	Total ug	26000	35000	24000	22000
Cadmium	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	1.0	Total ug	8.4	15	7.5	6.7
Cobalt	1.0	Total ug	< 1	< 1	< 1	< 1
Copper	1.0	Total ug	3.2	5.5	7.5	4.5
Iron	10	Total ug	220	670	260	210
Lead	1	Total ug	2.1	6.7	3.9	2.7
Manganese	1.0	Total ug	6.5	15	7.0	5.3
Mercury	0.1	Total ug	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	1	Total ug	< 1	< 1	< 1	< 1
Nickel	1.0	Total ug	< 1	2.6	2.2	< 1
Selenium	1.0	Total ug	< 1	< 1	< 1	< 1
Titanium	1.0	Total ug	6.0	25	11	6.5
Zinc	1	Total ug	18000	27000	17000	16000
Particulates - Final weighing	0.01	mg	2704.2	2754.7	2856.8	2855.7
Particulates - Initial weighing	0.01	mg	2689.1	2782	2832.1	2705.3
Sample Comment			-	Filter Damaged	-	Filter Damaged

Client Sample ID Sample Matrix			AQM 2 - HVS1357 Filter paper	AQM 2 - HVS1356 Filter paper
Eurofins Sample No.			Oc0015510	Oc0015511
Date Sampled			Sep 03, 2022	Sep 09, 2022
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	1.0	Total ug	3.1	4.8
Barium	1.0	Total ug	28000	44000
Cadmium	0.5	Total ug	< 0.5	< 0.5
Chromium	1.0	Total ug	8.8	18
Cobalt	1.0	Total ug	< 1	< 1
Copper	1.0	Total ug	3.8	7.1

Client Sample ID Sample Matrix			AQM 2 - HVS1357 Filter paper S22-	AQM 2 - HVS1356 Filter paper S22-
Eurofins Sample No.			OC0015510	OC0015511
Date Sampled			Sep 03, 2022	Sep 09, 2022
Test/Reference	LOR	Unit		
Heavy Metals				
Iron	10	Total ug	260	380
Lead	1	Total ug	2.1	3.1
Manganese	1.0	Total ug	7.0	11
Mercury	0.1	Total ug	< 0.1	< 0.1
Molybdenum	1	Total ug	< 1	< 1
Nickel	1.0	Total ug	3.2	4.0
Selenium	1.0	Total ug	< 1	< 1
Titanium	1.0	Total ug	8.6	10
Zinc	1	Total ug	20000	31000
Particulates - Final weighing	0.01	mg	2722.9	2727.2
Particulates - Initial weighing	0.01	mg	2712.3	2694.9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Oct 10, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Particulates - Final weighing	Field	Oct 10, 2022	30 Days
- Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filters)			
Particulates - Initial weighing	Field	Oct 10, 2022	30 Days
Method: Filters weighed according to AS 2640 (Inholable) AS 2005 (Despirable) AS 4222 2 (Stock Filters) & C	SINE 4022 (U)/AS Non N	IATA Endorood)	

Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filters) & QS-INS-4033 (HVAS - Non NATA Endorsed).

•		C !	Eurofins Env	vironment Te	esting Australia Pty Ltd															ofins A		y Ltd	J Eurofins Environment Testing N NZBN: 9429046024954		ent Testing NZ Ltd
web: v email:	www.eurofins.com.au	CINS	Melbourne 6 Monterey Roa Dandenong Sor VIC 3175 Tel: +61 3 8564 NATA# 1261 Si	Geel ad 19/8 uth Grov VIC VIC 5000 Tel: te# 1254 NAT	long Sydne Lewalan Street 179 Ma vedale Girraw 3216 NSW 2 +61 3 8564 5000 Tel: +6 'A# 1261 Site# 1254 NATA#	/ igowar R een 145 1 2 9900 1261 Sit	oad 8400 e# 1821	Canb Unit 1 Mitch ACT Tel: +	erra I,2 Daci ell 2911 -61 2 61	re Stree 13 809	B t 1, Q 1 T N	risban /21 Sma lurarrie LD 41 el: +61 ATA# 1	e allwood 72 7 3902 261 Site	Place 4600 e# 2079	Newo 4/52 Mayfi PO B Tel: + 04 NATA	astle ndustria eld Eas ox 60 W 61 2 49 w# 1261	al Drive t NSW 2 /ickham 68 844 Site# 2	2304 1 2293 8 5079	Perth Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool Penrose, WA 6106 Auckland 1061 Tel: +61 8 6253 4444 Tel: +64 9 526 45 51 NATA# 2377 Site# 2370 IANZ# 1327		Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290				
C	ompany Name: ddress:	Ramboll Au Level 3/100 North Sydne NSW 2060	stralia Pty Lt Pacific High ey	d way			O R P F	rder N eport hone: ax:	No.: #:	3 9 0 0	31800 93012 92 995 92 995	1193 0 54 81 54 81	18 50						Recei Due: Priori Conta	ived: ty: act Na	ame:		Oct 7 Oct 1 5 Day Greer	, 2022 1:50 P 4, 2022 Laing	М
Pi Pi	roject Name: roject ID:	CAPTAINS 318001193	FLAT LEAD	MANAGEM	IENT PLAN													Eu	rofins	s Ana	lytica	l Serv	vices I	Manager : Ar	ndrew Black
		Sa	ample Detai	I		Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	HOLD	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Particulates - Final weighing	Particulates - Initial weighing	Selenium	Titanium	Zinc		
Mel	bourne Laborate	ory - NATA # 12	261 Site # 12	254		X	Х	Х	Х	Х	Х	X	Х	Х	X	Х	х	X	Х	Х	X	х	Х		
Ext	ernal Laboratory	1	I	I]	
No	Sample ID	Sample Date	Sampling Time	Matrix	x LAB ID																				
1	AQM 2 - HVS1359	Aug 04, 2022		Filter pape	er S22-Oc001550	3 x	x	х	x	x	х		x	х	x	x	х	x	х	х	x	х	х		
2	AQM 2 - HVS1259	Aug 10, 2022		Filter pape	er S22-Oc001550	′ x	x	х	x	x	х		x	х	x	x	х	x	х	х	x	х	х		
3	AQM 2 - HVS1235	Aug 22, 2022		Filter pape	er S22-Oc0015508	³ x	x	x	x	x	х		x	х	x	x	х	x	x	х	x	х	х		
4	AQM 2 - HVS1358	Aug 28, 2022		Filter pape	er S22-Oc0015509) х	x	х	х	х	х		x	х	x	х	х	x	х	х	x	х	х		
5	AQM 2 - HVS1357	Sep 03, 2022		Filter pape	er S22-Oc001551) х	x	х	х	х	х		x	х	x	х	х	x	х	х	x	х	х		
6	AQM 2 - HVS1356	Sep 09, 2022		Filter pape	er S22-Oc001551	I x	x	x	х	х	х		x	х	x	х	х	x	x	х	x	х	x	1	
7	AQM 2 - HVS_UNKNO WN	Sep 15, 2022		Filter pape	er S22-Oc0015512	2						x													
Tes	t Counts					6	6	6	6	6	6	1	6	6	6	6	6	6	6	6	6	6	6]	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (<i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
 - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Andrew Black Scott Beddoes Analytical Services Manager Senior Analyst-Metal

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	

Greer Laing

Report
Project name
Project ID
Received Date

930118-A CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Oct 07, 2022

Client Sample ID			AQM 3 - HVS1246	AQM 3 - HVS1347	AQM 3 - HVS1346	AQM 3 - HVS1345
Sample Matrix			Filter paper	Filter paper	Filter paper	Filter paper
Eurofins Sample No.			S22- Oc0015482	S22- Oc0015483	S22- Oc0015484	S22- Oc0015485
Date Sampled			Aug 04, 2022	Aug 10, 2022	Aug 22, 2022	Aug 28, 2022
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	1.0	Total ug	2.0	3.7	3.1	4.7
Barium	1.0	Total ug	13000	26000	28000	36000
Cadmium	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	1.0	Total ug	770	8.1	9.2	12
Cobalt	1.0	Total ug	9.3	< 1	< 1	< 1
Copper	1.0	Total ug	18	2.0	2.7	2.8
Iron	10	Total ug	3400	240	310	370
Lead	1	Total ug	2.3	4.7	3.7	4.5
Manganese	1.0	Total ug	50	6.2	8.2	11
Mercury	0.1	Total ug	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	1	Total ug	91	< 1	< 1	< 1
Nickel	1.0	Total ug	460	< 1	1.5	1.5
Selenium	1.0	Total ug	< 1	< 1	< 1	< 1
Titanium	1.0	Total ug	4.5	10	9.4	12
Zinc	1	Total ug	9000	19000	19000	25000
Particulates - Final weighing	0.01	mg	2857.4	2795.4	2740.9	2711.2
Particulates - Initial weighing	0.01	mg	2776.4	2706.2	2691.3	2679.2

Client Sample ID			AQM 3 - HVS1344
Sample Matrix			Filter paper
Eurofins Sample No.			S22- Oc0015486
Date Sampled			Sep 03, 2022
Test/Reference	LOR	Unit	
Heavy Metals			
Arsenic	1.0	Total ug	3.0
Barium	1.0	Total ug	29000
Cadmium	0.5	Total ug	< 0.5
Chromium	1.0	Total ug	9.6
Cobalt	1.0	Total ug	< 1
Copper	1.0	Total ug	2.4
Iron	10	Total ug	280

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			AQM 3 - HVS1344 Filter paper S22- Oc0015486 Sep 03, 2022
Test/Reference	LOR	Unit	
Heavy Metals		_	
Lead	1	Total ug	2.9
Manganese	1.0	Total ug	8.0
Mercury	0.1	Total ug	< 0.1
Molybdenum	1	Total ug	< 1
Nickel	1.0	Total ug	< 1
Selenium	1.0	Total ug	< 1
Titanium	1.0	Total ug	8.0
Zinc	1	Total ug	20000
Particulates - Final weighing	0.01	mg	2702.2
Particulates - Initial weighing	0.01	mg	2695.2

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Oct 10, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Particulates - Final weighing	Field	Oct 10, 2022	30 Days
- Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filters)			
Particulates - Initial weighing	Field	Oct 10, 2022	30 Days
Method: Filters weighed according to AS 2640 (Inholable) AS 2005 (Despirable) AS4222 2 (Stock Filters) & C	SINE 4022 (U)/AS Non N	IATA Endorood)	

Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filters) & QS-INS-4033 (HVAS - Non NATA Endorsed).

		C :	Eurofins Env ABN: 50 005 08	r <mark>ironment Testinç</mark> 5 521	g Australia Pty Ltd														Euro ABN:	o <mark>fins A</mark> 91 05 0	RL Pt	<mark>y Ltd</mark> 8	Euro NZBN	fins Environmo : 9429046024954	ent Testing NZ Ltd
web: www.eurofins.com.au email: EnviroSales@eurofins.com		Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Sit	Geelong d 19/8 Lewa tth Grovedale VIC 3216 5000 5000 Tel: +61 3 ie# 1254 NATA# 12	Sydney lan Street 179 Mag Girrawe NSW 21 8564 5000 Tel: +61 61 Site# 1254 NATA#	jowar Ro en 45 2 9900 1261 Site	bad 8400 e# 1821	Canb Unit 1 Mitch ACT 2 Tel: +	erra ,2 Dacr ell 2911 61 2 61	e Stree 13 809 ⁻	t 1, M Q 1 T	risband /21 Sma lurarrie LD 417 el: +61 ATA# 1	e allwood 72 7 3902 4 261 Site	Place 4600 9# 2079	Newo 4/52 I Mayfi PO B Tel: + 4 NATA	astle ndustria eld East ox 60 W 61 2 49 # 1261	al Drive NSW 2 Vickham 68 8448 Site# 2	2304 2293 3 5079	Perth 46-48 Welsh WA 6 Tel: + NATA	Banksi npool 106 61 8 62 # 2377	ia Road 253 444 Site# 2	4 370	Auckl 35 O'F Penro Auckla Tel: +6 IANZ#	and Rorke Road se, and 1061 64 9 526 45 51 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290	
Co Ad	ompany Name: Idress:	Ramboll Aus Level 3/100 North Sydne NSW 2060	stralia Pty Lto Pacific Highv sy	d way			O Re Pl Fa	rder N eport hone: ax:	lo.: #:		31800 3011)2 995)2 995	1193 8 54 81 54 81	18 50						Recei Due: Priori Conta	ved: ty: ict Na	ıme:		Oct 7, Oct 14 5 Day Greer	2022 1:50 PM I, 2022 Laing	И
Pro Pro	oject Name: oject ID:	CAPTAINS 318001193	FLAT LEAD	MANAGEMENT	PLAN													Eu	rofins	Anal	ytical	l Serv	ices N	<i>l</i> lanager : An	drew Black
		Sá	ample Detail			Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	HOLD	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Particulates - Final weighing	Particulates - Initial weighing	Selenium	Titanium	Zinc		
Melk	oourne Laborato	ory - NATA # 12	261 Site # 12	54		Х	Х	Х	х	х	Х	x	Х	х	х	Х	Х	х	Х	х	X	х	Х		
Exte No	ernal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID																				
1	AQM 3 - HVS1246	Aug 04, 2022		Filter paper	S22-Oc0015482	x	x	x	х	x	х		x	х	x	х	х	x	x	х	x	х	x		
2	AQM 3 - HVS1347	Aug 10, 2022		Filter paper	S22-Oc0015483	x	x	х	х	х	х		x	х	x	х	х	x	х	х	x	х	x		
3	AQM 3 - HVS1346	Aug 22, 2022		Filter paper	S22-Oc0015484	x	x	х	х	x	х		x	х	x	х	х	x	х	х	x	х	x		
4	AQM 3 - HVS1345	Aug 28, 2022		Filter paper	S22-Oc0015485	х	x	х	х	х	х		x	х	x	х	х	х	х	х	x	х	х		
5	AQM 3 - HVS1344	Sep 03, 2022		Filter paper	S22-Oc0015486	х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х		
6	AQM 3 - HVS_UNKNO WN	Sep 15, 2022		Filter paper	S22-Oc0015487							x													
Test	Counts					5	5	5	5	5	5	1	5	5	5	5	5	5	5	5	5	5	5		

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
 - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Andrew Black Emily Rosenberg Scott Beddoes Analytical Services Manager Senior Analyst-Metal Senior Analyst-Metal

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accr Accreditati Site Numbo Accredited for NATA is a sign

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Greer Laing

Report
Project name
Project ID
Received Date

930112-A CAPTAINS FLAT LEAD MANAGEMENT PLAN 318001193 Jan 18, 2022

Client Sample ID			AQM 4 - HVS1141	AQM 4 - HVS1316	AQM 4 - HVS1314	AQM 4 - HVS1315
Sample Matrix			Filter paper	Filter paper	Filter paper	Filter paper
Eurofins Sample No.			S22- Oc0015421	S22- Oc0015422	S22- Oc0015423	S22- Oc0015424
Date Sampled			Aug 04, 2022	Aug 10, 2022	Aug 22, 2022	Aug 28, 2022
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	1.0	Total ug	2.0	1.7	2.4	17
Barium	1.0	Total ug	15000	12000	10000	15000
Cadmium	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	1.0	Total ug	5.2	4.3	700	820
Cobalt	1.0	Total ug	< 1	< 1	7.2	9.5
Copper	1.0	Total ug	1.4	2.6	18	21
Iron	10	Total ug	120	310	3200	3800
Lead	1	Total ug	1.2	2.9	5.3	11
Manganese	1.0	Total ug	3.6	6.8	47	58
Mercury	0.1	Total ug	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	1	Total ug	< 1	< 1	81	100
Nickel	1.0	Total ug	1.1	1.1	420	500
Selenium	1.0	Total ug	< 1	< 1	< 1	< 1
Titanium	1.0	Total ug	4.0	14	7.6	12
Zinc	1	Total ug	9900	7900	6800	10000
Particulates - Final weighing	0.01	mg	2857.9	2898.7	2863.5	2963
Particulates - Initial weighing	0.01	mg	2822.9	2787.6	2800.1	2785.5

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			AQM 4 - HVS1313 Filter paper S22- Oc0015425 Sep 03, 2022	AQM 4 - HVS1312 Filter paper S22- Oc0015426 Sep 09, 2022
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	1.0	Total ug	3.1	3.2
Barium	1.0	Total ug	19000	20000
Cadmium	0.5	Total ug	< 0.5	< 0.5
Chromium	1.0	Total ug	880	11
Cobalt	1.0	Total ug	11	< 1
Copper	1.0	Total ug	24	2.8
Iron	10	Total ug	4100	150

		AQM 4 - HVS1313	AQM 4 - HVS1312
		Filter paper	Filter paper
		S22- Oc0015425	S22- Oc0015426
		Sep 03, 2022	Sep 09, 2022
LOR	Unit		
1	Total ug	3.6	2.0
1.0	Total ug	63	4.3
0.1	Total ug	< 0.1	< 0.1
1	Total ug	110	< 1
1.0	Total ug	540	3.4
1.0	Total ug	< 1	< 1
1.0	Total ug	16	4.8
1	Total ug	13000	14000
0.01	mg	2850.2	2820.3
0.01	mg	2791	2803.3
	LOR 1 1.0 0.1 1.0 1.0 1.0 1.0 1.0	LOR Unit 1 Total ug 1.0 Total ug 0.1 Total ug 1.0 Total ug 1.0 Total ug 1.0 Total ug 1.0 Total ug 1.0 Total ug 1.0 Total ug 0.1 Total ug 1.0 Total ug	AQM 4 - HVS1313 Filter paper S22- Oc0015425 Sep 03, 2022 LOR Unit 1 Total ug 3.6 1.0 Total ug 63 0.1 Total ug 1.0 Total ug

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Oct 10, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Mercury	Melbourne	Oct 10, 2022	28 Days
- Method: SOP #6 Analysis of Volatile Organic Compounds in Passivated Canisters EPA Method TO-15			
Particulates - Final weighing	Field	Oct 10, 2022	30 Days
- Method: Filters weighed according to AS 3640 (Inhalable), AS 2985 (Respirable), AS4323.3 (Stack Filter	rs)		
Particulates - Initial weighing	Field	Oct 10, 2022	30 Days
- Method: Filters weighed according to AS 3640 (Inbalable) AS 2985 (Respirable) AS4323.3 (Stack Filter	s) & QS-INS-4033 (HVAS - No	on NATA Endorsed).	

le), AS 2985 (Respirable), AS4323.3 (S -4033 (HVAS

Eurofins Environment Testing Australia Pty Ltd																		Eurofins ARL Pty Ltd				Eurofins Environment Testing NZ Ltd			
web: www.eurofins.com.au email: EnviroSales@eurofins.com		Melbourne 6 Monterey Roa Dandenong Sor VIC 3175 Tel: +61 3 8564 NATA# 1261 Si	Gee ad 19/8 uth Gro VIC 5000 Tel: te# 1254 NAT	Geelong Sydney 19/8 Lewalan Street 179 Mag Grovedale Girrawee VIC 3216 NSW 214 Tel: +61 3 8564 5000 Tel: +61 54 NATA# 1261 Site# 1254		y agowar Road een 1145 i1 2 9900 8400 # 1261 Site# 1821		Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 217		B t 1, Q 1 T N	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 2079			Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 14 NATA# 1261 Site# 25079			Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370			4 370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327		Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290		
Ca Aa	ompany Name: ddress:	Ramboll Au Level 3/100 North Sydne NSW 2060	stralia Pty Lt Pacific High ey	d way			O R P F	rder N eport hone: ax:	No.: #:	3 9 0 0	31800 93011 92 995 92 995	1193 2 54 81 54 81	18 50						Recei Due: Priori Conta	ived: ty: act Na	ame:		Oct 7 Oct 1 5 Day Greer	, 2022 1:50 P 4, 2022 Laing	М
Pr Pr	roject Name: roject ID:	CAPTAINS 318001193	FLAT LEAD	MANAGEN	IENT PLAN													Eu	rofins	s Ana	lytica	l Serv	vices I	Manager : Ar	ndrew Black
		Sa	ample Detai	I		Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	HOLD	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Particulates - Final weighing	Particulates - Initial weighing	Selenium	Titanium	Zinc		
Mel	bourne Laborate	ory - NATA # 12	261 Site # 12	254		Х	Х	х	Х	Х	Х	х	Х	Х	Х	Х	х	X	х	Х	X	Х	х]	
Ext	ernal Laboratory	1	1																						
No	Sample ID	Sample Date	Sampling Time	Matri	x LAB ID																				
1	AQM 4 - HVS1141	Aug 04, 2022		Filter pape	er S22-Oc001542	x	x	х	x	x	х		x	х	x	x	х	x	х	х	x	х	х		
2	AQM 4 - HVS1316	Aug 10, 2022		Filter pape	er S22-Oc001542	2 x	x	х	x	x	х		x	х	x	x	х	x	х	х	x	х	х		
3	AQM 4 - HVS1314	Aug 22, 2022		Filter pape	er S22-Oc001542	³ x	x	x	х	х	х		x	х	x	x	х	x	x	х	x	х	х		
4	AQM 4 - HVS1315	Aug 28, 2022		Filter pape	er S22-Oc0015424	t x	x	x	х	х	х		x	х	x	x	х	x	x	х	x	х	х		
5	AQM 4 - HVS1313	Sep 03, 2022		Filter pape	er S22-Oc001542	5 x	x	х	х	х	х		x	х	x	x	х	x	х	х	x	х	х		
6	AQM 4 - HVS1312	Sep 09, 2022		Filter pape	er S22-Oc001542	³ x	x	х	х	х	х		х	х	х	х	х	x	х	х	x	х	х		
7	AQM 4 - HVS_UNKNO WN	Sep 15, 2022		Filter pape	er S22-Oc001542	7						x													
Tes	t Counts					6	6	6	6	6	6	1	6	6	6	6	6	6	6	6	6	6	6]	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
 - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Andrew Black Emily Rosenberg Analytical Services Manager Senior Analyst-Metal

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.